Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(20): 8239-8243, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31050413

RESUMO

Rhodopsin, composed of opsin and isomeric retinal, acts as the primary photoreceptor by converting light into electric signals. Inspired by rhodopsin, we have fabricated a light-regulated ionic gate on the basis of the design of a graphene oxide (GO)-biomimetic DNA-nanochannel architecture. In this design, photoswitchable azobenzene (Azo)-DNA is introduced to the surface of porous anodic alumina (PAA) membrane. With modulation of the interaction between the GO blocker and Azo-DNA via flexibly regulating trans and cis states of Azo under the irradiation of visible and ultraviolet light, alternatively, the ionic gate is switched between ON and OFF states. This newly constructed ionic gate can possess high efficiency for the control of ion transport because of the high blocking property of GO and the rather tiny path within the barrier layer which are both first employed to fabricate ionic gate. We anticipate that this rhodopsin-like ionic gate may provide a new model and method for the investigation of ion channel, ion function, and ion quantity. In addition, because of the advantages of simple fabrication, good biocompatibility, and universality, this bioinspired system may have potential applications as optical sensors, in photoelectric transformation, and in controllable drug delivery.


Assuntos
Materiais Biomiméticos/química , DNA/química , Grafite/química , Transporte de Íons/efeitos dos fármacos , Óxido de Alumínio/química , Compostos Azo/química , Compostos Azo/efeitos da radiação , Materiais Biomiméticos/efeitos da radiação , DNA/efeitos da radiação , Técnicas Eletroquímicas , Grafite/efeitos da radiação , Transporte de Íons/efeitos da radiação , Membranas Artificiais , Rodopsina/química , Estereoisomerismo , Raios Ultravioleta
2.
Chem Commun (Camb) ; 54(81): 11391-11394, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30182124

RESUMO

By employing DNA nanoflower blooming in the nanochannels of porous anodic alumina (PAA), a nanochannel platform for microRNA (miRNA) detection has been proposed. Significant steric and electrostatic hindrance of the miRNA-initiated DNA-nanoflower growth may also amplify the signal readout for miRNA detection to give excellent sensitivity, selectivity and reproducibility.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/métodos , DNA/química , MicroRNAs/sangue , Nanoestruturas/química , DNA/síntese química , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Porosidade , Reprodutibilidade dos Testes , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA