Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(1): e0380722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700687

RESUMO

Candida albicans remains the most common species causing invasive candidiasis. In this study, we present the population structure of 551 global C. albicans strains. Of these, the antifungal susceptibilities of 370 strains were tested. Specifically, 66.6% of the azole-nonsusceptible (NS)/non-wild-type (NWT) strains that were tested belonged to Clade 1. A phylogenetic analysis, a principal components analysis, the population structure, and a loss of heterozygosity events revealed two nested subclades in Clade 1, namely, Clade 1-R and Clade 1-R-α, that exhibited higher azole-NS/NWT rates (75.0% and 100%, respectively). In contrast, 6.4% (21/326) of the non-Clade 1-R isolates were NS/NWT to at least 1 of 4 azoles. Notably, all of the Clade 1-R-α isolates were pan-azole-NS/NWT that carried unique A114S and Y257H double substitutions in Erg11p and had the overexpression of ABC-type efflux pumps introduced by the substitution A736V in transcript factor Tac1p. It is worth noting that the Clade 1-R and Clade 1-R-α isolates were from different cities that are distributed over a large geographic span. Our study demonstrated the presence of specific phylogenetic subclades that are associated with antifungal resistance among C. albicans Clade 1, which calls for public attention on the monitoring of the future spread of these clones. IMPORTANCE Invasive candidiasis is the most common human fungal disease among hospitalized patients, and Candida albicans is the predominant pathogen. Considering the large number of infected cases and the limited alternative therapies, the azole-resistance of C. albicans brings a huge clinical threat. Here, our study suggested that antifungal resistance in C. albicans could also be associated with phylogenetic lineages. Specifically, it was revealed that more than half of the azole-resistant C. albicans strains belonged to the same clade. Furthermore, two nested subclades of the clade exhibited extremely high azole-resistance. It is worth noting that the isolates of two subclades were from different cities that are distributed over a large geographic span in China. This indicates that the azole-resistant C. albicans subclades may develop into serious public health concerns.


Assuntos
Antifúngicos , Candidíase Invasiva , Humanos , Antifúngicos/farmacologia , Candida albicans/genética , Filogenia , Testes de Sensibilidade Microbiana , Azóis , Farmacorresistência Fúngica/genética
2.
Bioresour Technol ; 317: 123993, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32799088

RESUMO

Microalgae (MA) was co-liquefied with sweet potato waste (SPW) to improve bio-oil and bio-char qualities via Mannich reaction. The influence of Mannich reaction on combustion performances of bio-oil and bio-char were investigated. Results suggested that the addition of SPW decrease the ignition temperature of bio-oil from 186.6 °C to 165.0 °C. In addition, the denitrification effect of Mannich reaction can decrease the HCN and NO emission of bio-oil, contributing to reducing pollutant emission. As for bio-char, Mannich reaction improved the combustible material content in bio-char, which decreased the risk of slagging problem. The comprehensive combustion indexes of bio-oil (1.23 × 10-6 × min-2×°C-3) and bio-char (4.79 × 10-8 × min-2×°C-3) from co-liquefaction were higher than those from liquefaction of MA (0.91 × 10-6 × min-2×°C-3 for bio-oil and 1.24 × 10-8 × min-2×°C-3 for bio-char), indicating that the combustion performance was promoted by adding SPW. Overall, Mannich reaction can be applied to improve the combustion performance of bio-oil and bio-char.


Assuntos
Ipomoea batatas , Microalgas , Biocombustíveis , Carvão Vegetal , Óleos de Plantas , Polifenóis , Temperatura
3.
Bioresour Technol ; 316: 123914, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32768997

RESUMO

This work studied the hydrothermal liquefaction of Chlorella pyrenoidosa and effect of emulsification on upgrading the bio-oil. The fuel properties and storage stability characteristics of emulsion fuels were explored. The combustion characteristic analysis showed that the ignition temperatures of emulsion fuels (139.6-151.3 °C) were lower than that of bio-oil (176.9 °C). Besides, emulsion fuels had higher comprehensive combustion indexes (7.24-14.08 × 10-6 × min-2 × C-3) than bio-oil (1.51 × 10-6 × min-2 × C-3), indicating that emulsion fuels had better combustion performance. The kinetic analysis showed that emulsification could effectively reduce the activation energy, resulting in less energy input for combustion. Based on chemical composition evolution during the storage process, a possible stability mechanism was proposed. The storage stability analysis indicated that the diesel-solvable fractions in bio-oil had better stability. Overall, this work provides a feasible way for bio-oil upgrading through emulsification. In addition, a better understanding of the stability property of emulsion fuel was provided.


Assuntos
Chlorella , Biocombustíveis , Cinética , Óleos de Plantas , Polifenóis , Temperatura
4.
Bioresour Technol ; 312: 123592, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32531734

RESUMO

Catalytic co-pyrolysis of water hyacinth and scrap tire experiments were performed to evaluate the feasibility of improving the monocyclic aromatic hydrocarbons production. The production of monocyclic aromatic hydrocarbons increased from 5.31% (sole pyrolysis of water hyacinth) to 13.11% (co-pyrolysis with scrap tire). With use of zeolites, the highest production of monocyclic aromatic hydrocarbons can reach up to 69.18%. Comprehensive comparison on catalytic effects of HZSM-5 and multilamellar MFI nanosheets were provided. With the material to multilamellar MFI nanosheets ratios changes from 2:1 to 1:4, the production of monocyclic aromatic hydrocarbons increases significantly from 37.15-69.18%. The average production of monocyclic aromatic hydrocarbons produced by using multilamellar MFI nanosheets were 12.07% higher than that using HZSM-5, indicating the better performance of multilamellar MFI nanosheets in producing monocyclic aromatic hydrocarbons. This work provided a reference for the reuse of water hyacinth and scrap tire over multilamellar MFI nanosheets in energy field.


Assuntos
Eichhornia , Pirólise , Biocombustíveis , Biomassa , Catálise , Temperatura Alta , Óleos de Plantas , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA