Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(9): e2002104, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709564

RESUMO

Immune checkpoint blockade therapy (ICBT) targeting checkpoints, such as, cytotoxic T-lymphocyte associated protein-4 (CTLA-4), programmed death-1 (PD-1), or programmed death-ligand 1 (PD-L1), can yield durable immune response in various types of cancers and has gained constantly increasing research interests in recent years. However, the efficacy of ICBT alone is limited by low response rate and immune-related side effects. Emerging preclinical and clinical studies reveal that chemotherapy, radiotherapy, phototherapy, or other immunotherapies can reprogramm immunologically "cold" tumor microenvironment into a "hot" one, thus synergizing with ICBT. In this review, the working principle and current development of various immune checkpoint inhibitors are summarized, while the interactive mechanism and recent progress of ICBT-based synergistic therapies with other immunotherapy, chemotherapy, phototherapy, and radiotherapy in fundamental and clinical studies in the past 5 years are depicted and highlighted. Moreover, the potential issues in current studies of ICBT-based synergistic therapies and future perspectives are also discussed.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
J Chem Inf Model ; 59(12): 5244-5262, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31689093

RESUMO

Protein kinases are important drug targets in several therapeutic areas ,and structure-based virtual screening (SBVS) is an important strategy in discovering lead compounds for kinase targets. However, there are multiple crystal structures available for each target, and determining which one is the most favorable is a key step in molecular docking for SBVS due to the ligand induce-fit effect. This work aimed to find the most desirable crystal structures for molecular docking by a comprehensive analysis of the protein kinase database which covers 190 different kinases from all eight main kinase families. Through an integrated self-docking and cross-docking evaluation, 86 targets were eventually evaluated on a total of 2608 crystal structures. Results showed that molecular docking has great capability in reproducing conformation of crystallized ligands and for each target, the most favorable crystal structure was selected, and the AGC family outperformed the other family targets based on RMSD comparison. In addition, RMSD values, GlideScore, and corresponding bioactivity data were compared and demonstrated certain relationships. This work provides great convenience for researchers to directly select the optimal crystal structure in SBVS-based kinase drug design and further validates the effectiveness of molecular docking in drug discovery.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA