Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Biol ; 62(1): 42-52, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112463

RESUMO

CONTEXT: Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE: To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS: LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS: LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.


Assuntos
Células-Tronco Mesenquimais , Proteínas de Sinalização YAP , Animais , Feminino , Humanos , Ratos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Diferenciação Celular , Osteogênese , Ovariectomia , Ratos Sprague-Dawley
2.
Artigo em Inglês | MEDLINE | ID: mdl-35388306

RESUMO

Background: Ginsenoside Rg1 is a major component of ginseng with antioxidative and antiaging effects, which is a traditional Chinese medicine. In this study, we investigated the potential spillover and mechanism of action of Rg1 on LiCl-driven hematopoietic stem cell aging. Results: Collect the purified Sca-1+ hematopoietic cells for differentiation ability detection and biochemical and molecular labeling. The experiment found that Rg1 plays an antiaging role in reversing the SA-ß-gal staining associated with LiCl-induced hematopoietic stem cell senescence, the increase in p53 and p21 proteins, and sustained DNA damage. At the same time, Rg1 protects hematopoietic cells from the reduced differentiation ability caused by LiCl. In addition, Rg1 increased the excessive inhibition of intracellular GSK-3ß protein, resulting in the maintenance of ß-catenin protein levels in hematopoietic cells after LiCl treatment. Then, the target gene level of ß-catenin can be maintained. Conclusions: Rg1 exerts the pharmacological effect of maintaining the activity of GSK-3ß in Sca-1+ hematopoietic cells, enhances the antioxidant potential of cells, improves the redox homeostasis, and thus protects cells from the decline in differentiation ability caused by aging. This study provides a potential therapeutic strategy to reduce stem cell pool failure caused by chronic oxidative damage to hematopoietic stem cells.

3.
J Ethnopharmacol ; 291: 115095, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35176466

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bufonis (VB), an animal drug called Chansu in China, is the product of the secretion of Bufo gargarizans Cantor or B. melanostictus Schneider. As a traditional Chinese medicine (TCM) for a long time, it has been widely used in the treatment of heart failure, ulcer, pain, and various cancers. Cinobufaginn (CNB), the cardiotonic steroid or bufalene lactone extracted from VB, has the effects of detoxification, detumescence, and analgesia. AIM OF THE STUDY: The present study aimed to define the effects of CNB on non-small-cell lung cancer (NSCLC) and identify the potential molecular mechanisms. MATERIALS AND METHODS: A549 cells were treated with cinobufagin and cell viability, apoptosis, migration, and invasion were then evaluated using Cell Counting Kit-8 (CCK8) assays, flow cytometry, and Transwell assays, respectively. Moreover, the levels of proliferating cell nuclear antigen (PCNA), cytokeratin8 (CK8), poly ADP-ribose polymerase (PARP), Caspase3, Caspase8, B-cell lymphoma/lewkmia-2(Bcl-2), Bcl2-Associated X(Bax), forkhead box O1 (FOXO1), and euchromatic histone-lysine N-methyltransferase2 (G9a, EHMT2) in A549 cells were evaluated using qRT-PCR and/or Western blot analysis (WB), Co-IP, immunofluorescence, and immunohistochemistry. An in vivo imaging system, TUNEL, Immunofluorescence, and immunohistochemistry were also used to detect proliferating cell nuclear antigen(PCNA), Ki67, E-Cadherin(E-Cad), FOXO1, and G9a in mouse xenograft model experiments. RESULTS: CNB suppressed cell proliferation, migration, and invasion but promoted apoptosis in A549 cells in a dose- and time-dependent manner, while cinobufagin had no cytotoxic effect on BEAS-2B cells. In vivo, cinobufagin inhibited the proliferation, migration, and invasion of A549 cells and promoted their apoptosis. The occurrence of the above phenomena was accompanied by an increase in FOXO1 expression and a decrease in G9a expression. In A549 cells, CNB did not reverse the changes in the proliferation, migration, invasion, and apoptosis of A549 cells after FOXO1 was successfully silenced. CONCLUSION: Our study provides the first evidence that cinobufagin suppresses the malignant biological behaviours of NSCLC cells in vivo and in vitro and suggests that mechanistically, this effect may be achieved by inhibiting the expression of the histone methyltransferase G9a and activating the tumour suppressor gene FOXO1. Taken together, our findings provide important insights into the molecular mechanism underlying cinobufagin's anticancer activity, and suggest that cinobufagin could be a candidate for targeted cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Animais , Apoptose , Bufanolídeos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Antígenos de Histocompatibilidade/farmacologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos
4.
Front Oncol ; 12: 1034750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591458

RESUMO

Background: Gou Qi Zi (Lycium barbarum) is a traditional herbal medicine with antioxidative effects. Although Gou Qi Zi has been used to prevent premature aging and in the treatment of non-small cell lung cancer (NSCLC), its mechanism of action in NSCLC remains unclear. The present study utilized network pharmacology to assess the potential mechanism of action of Gou Qi Zi in the treatment of NSCLC. Methods: The TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM and TTD databases were searched for the active components of Gou Qi Zi and their potential therapeutic targets in NSCLC. Protein-protein interaction networks were identified and the interactions of target proteins were analyzed. Involved pathways were determined by GO enrichment and KEGG pathway analyses using the Metascape database, and molecular docking technology was used to study the interactions between active compounds and potential targets. These results were verified by cell counting kit-8 assays, BrdU labeling, flow cytometry, immunohistochemistry, western blotting, and qRT-PCR. Results: Database searches identified 33 active components in Gou Qi Zi, 199 predicted biological targets and 113 NSCLC-related targets. A network of targets of traditional Chinese medicine compounds and potential targets of Gou Qi Zi in NSCLC was constructed. GO enrichment analysis showed that Gou Qi Zi targeting of NSCLC was mainly due to the effect of its associated lipopolysaccharide. KEGG pathway analysis showed that Gou Qi Zi acted mainly through the PI3K/AKT1 signaling pathway in the treatment of NSCLC. Molecular docking experiments showed that the bioactive compounds of Gou Qi Zi could bind to AKT1, C-MYC and TP53. These results were verified by experimental assays. Conclusion: Gou Qi Zi induces apoptosis and inhibits proliferation of NSCLC in vitro and in vivo by inhibiting the PI3K/AKT1 signaling pathway.

5.
Mol Med Rep ; 17(5): 6269-6276, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512726

RESUMO

With the growing population, aging, extended lifespans and anti-aging have become popular areas of research in the life and social sciences. With increasing age, the structure and function of the testes, the spermatogenetic and androgen­producing organ in the male reproductive system, gradually declines. Ginsenoside Rg1 is an extract of Panax ginseng in traditional Chinese medicine. The extract facilitates anti­aging through its anti­inflammatory and antioxidant properties. However, it has not been reported whether ginsenoside Rg1 delays testicular aging. The present study established D­galactose (D­gal)­induced aging mouse models to examine the protective effects of ginsenoside Rg1 on the structure and function of the testes, and the underlying mechanism. A total of 60 healthy specific pathogen­free male C57BL/6 mice were randomly divided into four groups: Control group; Rg1 group; D­gal + Rg1 group; and D­gal group. The tissues of the mice were used for further experiments. The present study further investigated the effects of Rg1 on the volume of serum testosterone, the testicular index, testicular microscopic structures, the senescence of spermatogenetic cells, the apoptosis of spermatogenetic cells, the activity of the antioxidant enzymes, the levels of inflammatory cytokines, and the levels of S­phase kinase­associated protein (p19), cyclin­dependent kinase inhibitor 1 (p21) and cellular tumor antigen p53 (p53) in D­gal­induced aging mice. In general, compared with the D­gal group, the treatment of Rg1 increased the testis index, serum testosterone level and the active content of superoxide dismutase and the total antioxidant capacity. The percentage of senescence­associated ß­galactosidase­positive cells, the level of apoptosis and the volume of methane dicarboxylic aldehyde, tumor necrosis factor­α, interleukin (IL)­1ß and IL­6 in testicular tissues were significantly decreased, and the expression of p19, p53 and p21 was downregulated due to the treatment with Rg1. The results of the present study demonstrated that ginsenoside Rg1 was able to protect the testes against D­gal­induced aging in mice. In addition, the protective effect of Rg1 may be achieved via antioxidation and downregulation of the p19/p53/p21 signaling pathway.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Galactose/efeitos adversos , Ginsenosídeos/farmacologia , Testículo/metabolismo , Envelhecimento/patologia , Animais , Galactose/farmacologia , Masculino , Camundongos , Testículo/patologia
6.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143796

RESUMO

Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated ß-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34⁺ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.


Assuntos
Angelica sinensis , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Angelica sinensis/química , Angelica sinensis/metabolismo , Biomarcadores , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Fluoruracila/farmacologia , Humanos , Substâncias Protetoras , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA