Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36248424

RESUMO

Upregulation of keratin 80 (KRT80) expression levels and carcinogenic function has been found in several types of tumors. However, its contribution and mechanism in NSCLC remain to be outlined. In this study, bioinformatic investigation from the TCGA dataset revealed that KRT80 was confirmed to be elevated in human NSCLC tissues. The results of qRT-PCR and Western blot assays disclosed that KRT80 was uplifted in NSCLC cells. Data from CCK-8 and colony formation assays exhibited that depletion of KRT80 restrained NSCLC cell proliferation. Findings from Transwell and Western blot assays illustrated that downregulation of KRT80 inhibited NSCLC cell migration, invasion, and EMT. Further mechanism exploration implied that KRT80 may be included within the regulation of EMT of NSCLC cells by affecting the TGF-ß/SMAD pathway. Moreover, depletion of KRT80 attenuated xenograft tumor growth and the expressions of KRT80, Ki-67, and TGFBR1. In conclusion, depletion of KRT80 repressed NSCLC cell proliferation, invasion, and EMT, possibly mediated by the TGF-ß/SMAD signaling pathway, indicating that KRT80 may be a potentially useful target for NSCLC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36118078

RESUMO

Background: LncRNA TP73-AS1 has been revealed to exert a noteworthy impact on the occurrence and advancement of different cancers. In this study, we explored the function of TP73-AS1 in tumor growth, cell progression as well as the relevant molecular mechanism in non-small-cell lung cancer (NSCLC). Methods: QRT-PCR was employed to assess the expression of TP73-AS1, miR-125a-3p, and actinin alpha 4 (ACTN4) in NSCLC cells. The biological effect of TP73-AS1 on NSCLC cells was assessed by cell transfection, CCK8, and transwell experiments. We further predicted the interaction among RNAs (TP73-AS1, miR-125a-3p, and ACTN4) through bioinformatics online tools and verified via luciferase reporter, RNA immunoprecipitation, and qRT-PCR assays. Xenograft models of SPC-A1 cells were conducted to test how TP73-AS1 regulates tumorigenesis. Western blot, as well as the immunohistochemistry (IHC) assays, was utilized to measure the expression levels. Functions of TP73-AS1 in NSCLC progression through the miR-125a-3p/ACTN4 axis were investigated by rescue experiments. Results: Knockdown of TP73-AS1 suppressed the growth and simultaneously attenuated the migration and invasion ability of NSCLC SPC-A1 and A549 cells. Bioinformatics and molecular mechanism assays demonstrated that TP73-AS1 could bind to miR-125a-3p/ACTN4 and regulate their expression. Moreover, the rescued-function experiment demonstrated that suppressing miR-125a-3p or elevating ACTN4 turned around the suppression effect of sh-TP73-AS1 on NSCLC progression. TP73-AS1 inhibition could also inhibit the NSCLC tumor growth and correspondingly regulated the expression of miR-125a-3p and ACTN4 in the tumor xenograft model. Conclusion: The present study indicated that TP73-AS1 affects NSCLC progression through a new competitive RNA (ceRNA) regulatory network of miR-125a-3p/ACTN4, providing an underlying target for NSCLC treatment in the future.

3.
Angew Chem Int Ed Engl ; 60(35): 19201-19206, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34137147

RESUMO

The rapid emergence of drug-resistant bacteria has raised a great social concern together with the impetus for exploring advanced antibacterial ways. NIR-triggered antimicrobial photodynamic therapy (PDT) by lanthanide-doped upconversion nanoparticles (UCNP) as energy donor exhibits the advantages of high tissue penetration, broad antibacterial spectrum and less acquired resistance, but is still limited by its low efficacy. Now we designed a bio-inorganic nanohybrid and combined lysozyme (LYZ) with UCNP-PDT system to enhance the efficiency against resistant bacteria. Benefiting from the rapid adhesion to bacteria, intelligently bacteria-responsive LYZ release and synergistic LYZ-PDT effect, the nanoplatform achieves an exceptionally strong bactericidal capacity and conspicuous bacteriostasis on methicillin-resistant S. aureus. These findings pave the way for designing efficiently antibacterial nanomaterials and provide a new strategy for combating deep-tissue bacterial infection.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Muramidase/química , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Muramidase/metabolismo , Nanopartículas/metabolismo , Tamanho da Partícula , Fármacos Fotossensibilizantes/química
4.
Theranostics ; 10(2): 782-796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903150

RESUMO

Nanobubble (NB), which simultaneously enhances ultrasound (US) images and access therapeutic platforms, is required for future cancer treatment. Methods: We designed a theranostic agent for novel cancer treatment by using an NB-encapsulated hybrid nanosystem that can be monitored by US and fluorescent imaging and activated by near-infrared (NIR) light. The nanosystem was transported to the tumor through the enhanced permeability and retention effect. The hybrid nanosystem comprised upconversion nanoparticle (UCNP) and mesoporous silica-coated gold nanorod (AuNR@mS) with the photosensitizer merocyanine 540 to realize dual phototherapy. Results: With the NIR light-triggered, the luminous intensity of the UCNP was enhanced by doping holmium ion and emitted visible green and red lights at 540 and 660 nm. The high optical density state between the UCNP and AuNR@mS can induce plasmonic enhancement to improve the photothermal and photodynamic effects, resulting in cell death by apoptosis. The nanosystem showed excellent stability to avoid the aggregation of nanoparticles during the treatment. JC-1 dye was used as an indicator of mitochondrial membrane potential to identify the mechanism of cell death. The results of in vitro and in vivo analyses confirmed the curative effect of improved dual phototherapy. Conclusion: We developed and showed the therapeutic functions of a novel nanosystem with the combination of multiple theranostic nanoplatforms that can be triggered and activated by 808 nm NIR laser and US.


Assuntos
Ouro/química , Neoplasias Pulmonares/terapia , Nanopartículas/administração & dosagem , Fototerapia/métodos , Pirimidinonas/farmacologia , Nanomedicina Teranóstica/métodos , Animais , Morte Celular , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Humanos , Hipertermia Induzida/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Modelos Animais , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA