Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2023: 2975193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36686380

RESUMO

Excessive bone resorption due to increased inflammatory factors is a common feature of inflammatory lytic bone diseases. This group of diseases is effectively treated with drugs. In recent years, many studies have reported that traditional Chinese medicine herbs have substantial effects on inflammation, osteoclast differentiation and maturation, and bone destruction. Herein, we investigated the effects of osthole (OST) on lipopolysaccharide- (LPS-) induced macrophage polarization, inflammatory responses, and osteolysis. In vitro, we used immunofluorescence and quantitative real-time polymerase chain reaction assays to confirm whether bone marrow-derived macrophages showed an increased expression of inflammatory factors, such as interleukin-6, iNOS, CCR7, and CD86, in the presence of LPS. However, we found that such expression was suppressed and that the M2 macrophage expression increased in the presence of OST. OST reduced LPS- and RANKL-induced intracellular reactive oxygen species production in the bone marrow-derived macrophages. Further, it potently suppressed osteoclast differentiation and osteoclast-specific gene expression by suppressing the P38/MAPK and NF-κB pathways. Consistent with the in vitro observations, OST greatly ameliorated LPS-induced bone resorption and modulated the ratio of macrophages at the site of osteolysis. Taken together, OST has great potential for use in the management of osteolytic diseases.


Assuntos
Reabsorção Óssea , Osteólise , Animais , Camundongos , Osteólise/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Macrófagos/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Crânio/metabolismo , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular , Osteogênese , Camundongos Endogâmicos C57BL
2.
Exp Cell Res ; 382(1): 111470, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211955

RESUMO

Bone resorption, initiated by osteoclasts (OCs), plays an essential role in bone homeostasis. The abnormalities of bone resorption may induce a series of diseases, including osteoarthritis, osteoporosis and aseptic peri-implant loosening. Nirogacestat (PF-03084014, PF), a novel gamma-secretase inhibitor, has been used in phase II clinical trial for treatment of desmoid tumor. However, whether it has the therapeutic effect on abnormal bone resorption remains to be evaluated. In this study, we investigated the role of PF in the regulation of receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclastogenesis in vitro, and the lipopolysaccharide (LPS)-induced bone resorption in vivo. It was found that PF could suppress the formation of osteoclasts from bone marrow macrophages (BMMs) without causing cytotoxicity, inhibit bone resorption and downregulate the mRNA level of osteoclast-specific markers, including calcitonin receptor (CTR), tartrate resistant acid phosphatase (TRAP), cathepsin K (CTSK), dendritic cell-specific transmembrane protein (Dc-stamp), Atp6v0d2 (V-ATPase d2) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Furthermore, Notch2 signaling, as well as RANKL-induced AKT signaling was significantly inhibited in BMMs. Consistent with in vitro observation, we found that PF greatly ameliorated LPS-induced bone resorption. Taken together, our study demonstrated that PF has a great potential to be used in management of osteolytic diseases.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Tetra-Hidronaftalenos/uso terapêutico , Valina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Reabsorção Óssea/induzido quimicamente , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Lipopolissacarídeos/toxicidade , Fator Estimulador de Colônias de Macrófagos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Ligante RANK/farmacologia , Proteínas Recombinantes/farmacologia , Tetra-Hidronaftalenos/farmacologia , Valina/farmacologia , Valina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA