Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(3): 2351-2371, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36975522

RESUMO

Pulmonary hypertension (PH) is a lethal disease due to the remodeling of pulmonary vessels. Its pathophysiological characteristics include increased pulmonary arterial pressure and pulmonary vascular resistance, leading to right heart failure and death. The pathological mechanism of PH is complex and includes inflammation, oxidative stress, vasoconstriction/diastolic imbalance, genetic factors, and ion channel abnormalities. Currently, many clinical drugs for the treatment of PH mainly play their role by relaxing pulmonary arteries, and the treatment effect is limited. Recent studies have shown that various natural products have unique therapeutic advantages for PH with complex pathological mechanisms owing to their multitarget characteristics and low toxicity. This review summarizes the main natural products and their pharmacological mechanisms in PH treatment to provide a useful reference for future research and development of new anti-PH drugs and their mechanisms.

2.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232461

RESUMO

Quercetin and kaempferol are flavonoids widely present in fruits, vegetables, and medicinal plants. They have attracted much attention due to their antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective properties. As the guarantee cells in direct contact with germ cells, Sertoli cells exert the role of support, nutrition, and protection in spermatogenesis. In the current study, network pharmacology was used to explore the targets and signaling pathways of quercetin and kaempferol in treating spermatogenic disorders. In vitro experiments were integrated to verify the results of quercetin and kaempferol against heat stress-induced Sertoli cell injury. The online platform was used to analyze the GO biological pathway and KEGG pathway. The results of the network pharmacology showed that quercetin and kaempferol intervention in spermatogenesis disorders were mostly targeting the oxidative response to oxidative stress, the ROS metabolic process and the NFκB pathway. The results of the cell experiment showed that Quercetin and kaempferol can prevent the decline of cell viability induced by heat stress, reduce the expression levels of HSP70 and ROS in Sertoli cells, reduce p-NF-κB-p65 and p-IκB levels, up-regulate the expression of occludin, vimentin and F-actin in Sertoli cells, and protect cell structure. Our research is the first to demonstrate that quercetin and kaempferol may exert effects in resisting the injury of cell viability and structure under heat stress.


Assuntos
Queimaduras , Quercetina , Actinas , Antibacterianos/uso terapêutico , Antioxidantes/farmacologia , Queimaduras/tratamento farmacológico , Flavonoides , Resposta ao Choque Térmico , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Masculino , NF-kappa B/metabolismo , Farmacologia em Rede , Ocludina , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Vimentina
3.
Biomed Pharmacother ; 151: 113191, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643068

RESUMO

Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.


Assuntos
Flavanonas , Hipertensão Pulmonar , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Hipertensão Pulmonar/tratamento farmacológico
4.
Front Pharmacol ; 13: 844400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479305

RESUMO

Traditional Chinese medicine (TCM) plays an important role in the treatment of complex diseases, especially cardiovascular diseases. However, it is hard to identify their modes of action on account of their multiple components. The present study aims to evaluate the effects of Dan-Shen-Yin (DSY) granules on hypoxia-induced pulmonary hypertension (HPH), and then to decipher the molecular mechanisms of DSY. Systematic pharmacology was employed to identify the targets of DSY on HPH. Furthermore, core genes were identified by constructing a protein-protein interaction (PPI) network and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Related genes and pathways were verified using a hypoxia-induced mouse model and hypoxia-treated pulmonary artery cells. Based on network pharmacology, 147 potential targets of DSY on HPH were found, constructing a PPI network, and 13 hub genes were predicted. The results showed that the effect of DSY may be closely associated with AKT serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription 3 (STAT3), and HIF-1 signaling pathways, as well as biological processes such as cell proliferation. Consistent with network pharmacology analysis, experiments in vivo demonstrated that DSY could prevent the development of HPH in a hypoxia-induced mouse model and alleviate pulmonary vascular remodeling. In addition, inhibition of STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways might serve as mechanisms. Taken together, the network pharmacology analysis suggested that DSY exhibited therapeutic effects through multiple targets in the treatment of HPH. The inferences were initially confirmed by subsequent in vivo and in vitro studies. This study provides a novel perspective for studying the relevance of TCM and disease processes and illustrates the advantage of this approach and the multitargeted anti-HPH effect of DSY.

5.
Oxid Med Cell Longev ; 2021: 4576071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422208

RESUMO

Pulmonary hypertension (PH) is a severe and progressive cardiovascular disease. Its pathological mechanism is complex, and the common pathological feature is pulmonary vascular remodeling. The efficacy of existing therapeutic agents is limited. Traditional Chinese medicine (TCM) has its unique advantages in the prevention and treatment of complex diseases. In this study, the approaches of network pharmacology combined with biological verification are employed to explore the role of Buyang huanwu decoction (BYHWD) in the treatment of PH. The active ingredients in BYHWD were first screened based on the ADME properties of the compounds. In turn, the mean of data mining was utilized to analyze the potential targets of BYHWD for the treatment of PH. On this basis, a series of interaction networks were constructed for searching the core targets. The genes including AKT1, MMP9, NOS3/eNOS, and EGFR were found to be possible key targets in BYHWD. The results of enrichment analysis showed that the targets of BYHWD focused on smooth muscle cell proliferation, migration, and apoptosis, which are classic biological processes involved in pulmonary vascular remodeling and are closely related to the PI3K-Akt-eNOS pathway. The methods of biological experiments were adopted to verify the above results. The present study elucidated the mechanism of BYHWD in the treatment of PH and provided new ideas for the clinical use of TCM in the treatment of PH.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Farmacologia em Rede/métodos , Artéria Pulmonar/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose , Movimento Celular , Proliferação de Células , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Mapas de Interação de Proteínas , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
6.
Pharmacol Rep ; 71(5): 855-861, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408784

RESUMO

BACKGROUND: Recent evidence indicates that Puerarin has a protective effect on pulmonary arteries. In the present study, we aimed to investigate whether Puerarin could protect pulmonary arterial endothelial cells from hypoxic injury and determine its potential targets. METHODS: In our study, human pulmonary arterial endothelial cells (HPAECs) were injured by hypoxic (1% O2) incubation. Cell viability was detected by a cell counting kit (CCK8). The production of nitric oxide (NO) was detected by Griess reagent and endothelin-1 (ET-1) was detected by the ELISA method. Oxidative stress was measured by a fluorescence microscope via the fluorescent probe DCFH-DA. Western blotting was employed for studying the mechanism. RESULTS: The results show that Puerarin protects HPAECs from hypoxia-induced apoptosis and slightly improves cell viability. Puerarin increases NO and decreases ET-1 to prevent the imbalance between vasoactive substances induced by hypoxia in HPAECs. Puerarin also inhibits the oxidative stress induced by hypoxia. The results from the Western blot show that Puerarin activates the BMPRII/Smad and PPARγ/PI3K/Akt signaling pathways. CONCLUSION: In conclusion, Puerarin protects HPAECs from hypoxic injury through the inhibition of oxidative stress and the activation of the BMPRII and PPARγ signaling pathways. This work provides insight into the development of Puerarin as a treatment for hypoxic pulmonary hypertension.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Isoflavonas/farmacologia , PPAR gama/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Transdução de Sinais
7.
Molecules ; 23(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558188

RESUMO

Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4⁻9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1ß and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/ß phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 µM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.


Assuntos
Isoflavonas/uso terapêutico , Isoproterenol/toxicidade , Infarto do Miocárdio/induzido quimicamente , NF-kappa B/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Vasos Coronários/citologia , Eletrocardiografia , Células Endoteliais/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Chin Med ; 45(6): 1185-1200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28893092

RESUMO

Salvianolic acid A (SAA), a polyphenols acid, is a bioactive ingredient from a traditional Chinese medicine called Dan shen (Salvia Miltiorrhiza Bunge). According to previous studies, it was shown to have various effects such as anti-oxidative stress, antidiabetic complications and antipulmonary hypertension. This study aimed to investigate the effect of SAA on pulmonary arterial endothelial-mesenchymal transition (EndoMT) induced by hypoxia and the underlying mechanisms. Primary cultured human pulmonary arterial endothelial cells (HPAECs) were exposed to 1% O2 for 48[Formula: see text]h with or without SAA treatment. SAA treatment improved the morphology of HPAECs and inhibited the cytoskeleton remodeling. A total of 3[Formula: see text][Formula: see text]M SAA reduced migration distances from 262.2[Formula: see text][Formula: see text]m to 198.4[Formula: see text][Formula: see text]m at 24[Formula: see text]h and 344.8[Formula: see text][Formula: see text]m to 109.3[Formula: see text][Formula: see text]m at 48[Formula: see text]h. It was observed that the production of ROS in cells was significantly reduced by the treatment of 3[Formula: see text][Formula: see text]M SAA. Meanwhile, SAA alleviated the loss of CD31 and slightly inhibited the expression of [Formula: see text]-SMA. The mechanisms study shows that SAA treatment increased the phosphorylation levels of Smad1/5, but inhibited that of Smad2/3. Furthermore, SAA attenuated the phosphorylation levels of ERK and Cofilin, which were enhanced by hypoxia. Based on these results, our study indicated that SAA treatment can protect HPAECs from endoMT induced by hypoxia, which may perform via the inhibition on ROS production and further through the downstream effectors of BMPRs or TGF[Formula: see text]R including Smads, ERK and ROCK/cofilin pathways.


Assuntos
Ácidos Cafeicos/farmacologia , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hipóxia/patologia , Lactatos/farmacologia , Salvia miltiorrhiza/química , Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/patologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Artéria Pulmonar/citologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo
9.
Acta Pharmacol Sin ; 37(6): 772-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27180980

RESUMO

AIM: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. METHODS: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg(-1)·d(-1)) or a positive control bosentan (30 mg·kg(-1)·d(-1)) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. RESULTS: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. CONCLUSION: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH.


Assuntos
Ácidos Cafeicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Lactatos/uso terapêutico , Artéria Pulmonar/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Ácidos Cafeicos/química , Medicamentos de Ervas Chinesas/química , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Lactatos/química , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiologia , Masculino , Monocrotalina , Miocárdio/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Salvia miltiorrhiza/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA