Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663563

RESUMO

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.


Assuntos
Mel , Cirrose Hepática , Oligossacarídeos , Animais , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Oligossacarídeos/farmacologia , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/química , Masculino , Fabaceae/química , Tetracloreto de Carbono , Fígado/efeitos dos fármacos , Fígado/patologia , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo
2.
Chemosphere ; 235: 1180-1188, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31561309

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of highly persistent contaminants with high bioaccumulation and toxicity. Our previous studies showed that perfluorooctanoic acid (PFOA) can be completely defluorinated under UV irradiation in organo-montmorillonite/indole acetic acid (IAA) system. However, there is still lack of information for the degradation mechanism and the test for wastewater treatment. Here, we systematically investigated the defluorination reaction in the presence of different organo-montmorillonites and found that the degradation process was apparently controlled by the configuration of surfactants. In hexadecyltrimethyl ammonium (HDTMA)-modified montmorillonite, HDTMA exists as a tilt conformation and isolated clay interlayer from the aqueous solution, protecting hydrated electrons generated by photo-irradiation of IAA from quenching by oxygen. Defluorination hydrogenation process was the dominant degradation pathway. While in poly-4-vinylpyridine-co-styrene (PVPcoS)-modified montmorillonite, due to the multiple charges of PVPcoS, a flat conformation parallel to clay surface was expected. Hydroxyl radicals, which were generated by the reaction of hydrated electrons with oxygen molecules diffused into clay interlayer, are also involved in the degradation process. Our results further demonstrate that mixture modified montmorillonite could combine the advantages of both modifications, thus showing superior reactivity even for actual industrial wastewater without any pretreatment. This technique would have great potential for treatment of actual wastewater.


Assuntos
Bentonita/química , Caprilatos/química , Argila/química , Elétrons , Fluorocarbonos/química , Tensoativos/química , Adsorção , Radical Hidroxila/química , Conformação Molecular , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA