Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 873: 162341, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828064

RESUMO

Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.


Assuntos
Carbono , Esgotos , Fermentação , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fósforo , Nitrogênio , Ácidos Graxos Voláteis , Reatores Biológicos
2.
Sci Total Environ ; 799: 149301, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371418

RESUMO

Frost-free areas have suitable climate for wetland plant growth and constructed wetlands (CW) technology. Information on the quantification of plant biomass and uptake efficiency in field-scale CWs is limited in these climates. The removal efficiency of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and total suspended solids (TSS) in wastewater from sewage plants, domestic sewage, and an industrial park in 15 rural and urban CWs in Guangdong Province, China, with an average temperature of 30 °C was evaluated. The effects of influent concentration, hydraulic load, the wastewater's physicochemical properties, operating conditions, and plant uptake were analysed. The mean removal rates were 40.0%, 45.2%, 41.1%, and 71.7% for TN, TP, COD, and TSS, respectively, which were higher than the removal load of the field-scale CWs in temperate regions. Removal loads of TN, TP, COD, and TSS were highest in CWs that have been operating for 5-6 years, treating wastewater volumes of over 1 m3/m2·d. The removal efficiency was mainly related to the inflow concentration and less affected by the type of CWs. Nutrient accumulation trends were primarily linked to influent concentrations (TN: r2 = 0.89, P = 0.007; TP: r2 = 0.96, P = 0.001) and plant biomass (TN: r2 = 0.96, P = 0.001; TP: r2 = 0.92, P = 0.004). Plant biomass contributed 2%-29% and 2%-70%, respectively, to removing N and P in CWs. The average uptake concentration of N and P in aboveground plant organs (15.66 ± 4.44 mg N/g, 2.15 ± 1.18 mg P/g) was generally higher than that of other temperate plants. A strong relationship between TN and TP in the biomass was also observed; however, the relationship is only restricted by the influent TP concentration. Arundo donax is well-adapted for nutrient accumulation and adaptation and is an ideal wetland plant to purify wastewater in frost-free climates.


Assuntos
Fósforo , Áreas Alagadas , Nitrogênio/análise , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
3.
Environ Res ; 194: 110452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188766

RESUMO

Sludge drying reed beds (SDRBs), as a natural biological technology, have positive effects on surplus sludge treatment. However, few studies focus on the sludge leachate purification in the SDRBs regarding the wetland plant species and sludge loading rates. In this study, four SDRBs planted with two wetland plant species (Phragmites australis, Typha angustifolia) were investigated for leachate purification under six sludge loading volumes and feeding frequencies (9L/3d, 6L/3d, 4L/d, 3L/d, 2.5L/d, and 2L/d). Results showed that the lowest Escherichia coli content of 630 number/mL was determined in the P. australis SDRBs, with 86.2-92.8% lower than those in the T. angustifolia controls. However, similar removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium (NH4+), total phosphorus (TP), and heavy metals were obtained in the SDRBs with both plant species. Moreover, the optimum sludge loading volume and feeding frequency of 3L/d was determined in the P. australis system, with pollutants (COD, TN, NH4+, and TP) mass removal efficiencies in the leachate being over 94.9%. In addition, the principal component analysis indicated that water loss and oxidation-reduction potential had positive influences on pollutant removal in the planted SDRBs. Overall, the best leachate removal efficiency was obtained in the P. australis SDRBs under the sludge loading volume and feeding frequency of 3L/d.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Nitrogênio/análise , Fósforo/análise , Esgotos , Eliminação de Resíduos Líquidos , Áreas Alagadas
4.
Water Environ Res ; 93(7): 1077-1086, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33305376

RESUMO

Suitable treatment of toilet sewage is a worldwide challenge. The anaerobic baffled reactor (ABR)-microbial fuel cell (MFC)-microbial electrolysis cell (MEC) (AMM) coupling treatment system has been constructed achieving effective removal of carbon, nitrogen, and phosphorus from toilet sewage and resource recovery; however, ammonium (NH4 + -N) and total phosphorus (TP) accumulation in tail water is a found problem of the system. In this study, acid-modified and alkali-heat modified palygorskite-bentonite (Pal-Ben) were used to recover NH4 + -N and TP from the AMM toilet tail water simultaneously. The higher adsorption capacity of the modified clay is attributed to the changes of surface structure of the material. The modified clay Pal-Ben (mass ratio 1:3) activated with alkali performed the highest NH4 + -N and TP recovery rates of 83.6% and 85.5%, respectively. The adsorption of NH4 + -N was more in line with the pseudo-second-order kinetic model and confirmed to be a chemical adsorption process, while the adsorption of TP was more in line with the pseudo-first-order kinetics and a physical adsorption process; the adsorption capacity of NH4 + -N accelerated with decrease of TP removal when pH increased. This study developed a low cost and high capacity of alkaline thermally modified clay removing/recovering NH4 + -N and TP from toilet tail water simultaneously. PRACTITIONER POINTS: A cheap composite clay was developed to recover nitrogen and phosphorus from toilet tail water simultaneously. The low costs and high capacity of alkaline thermally modified clay make it stand out in NH4 + -N and TP removal of toilet tail water. The process mechanism of simultaneous nitrogen and phosphorus recovery was clarified with characterization and kinetic model fitting. The used clay loaded with nutrients could be applied as a slow-release compound fertilizer for soil improvement.


Assuntos
Compostos de Amônio , Aparelho Sanitário , Poluentes Químicos da Água , Adsorção , Bentonita , Argila , Compostos de Magnésio , Nitrogênio , Fósforo , Compostos de Silício , Água
5.
Fish Shellfish Immunol ; 103: 321-331, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32446966

RESUMO

Polysaccharides have many functions in aquatic animals and are widely used as immunopotentiators. However, despite the emergence of serious diseases, few studies have explored the effects of Codonopsis pilosula polysaccharide (CPP) on crustaceans. We studied the effects of CPP on the growth performance, nonspecific immunity, antioxidant activity and disease resistance of red swamp crayfish (Procambarus clarkii). Healthy crayfish (5.80 ± 0.1 g) were fed diets supplemented with 0% (control), 0.05%, 0.1%, 0.15%, 0.20%, and 0.30% CPP for 8 weeks. At the end of the 8-week feeding trial, the optimal final body weight (FBW), weight gain (WG), specific growth rate (SGR), and feed conversion ratio (FCR) were observed in the crayfish fed the diets with 0.15% and 0.20% CPP, followed by those fed the diet with 0.30% CPP and then those fed the diet with 0.10% CPP, whereas the values of these parameters were obtained with the control crayfish (P < 0.05). The crayfish fed the diets with 0.15% and 0.20% CPP exhibited a significantly higher total hemocyte count (THC) and significantly increased phenoloxidase (PO), lysozyme (LZM), hemocyte (Hc), acid phosphatase (ACP) and alkaline phosphatase (AKP) compared with those belonging to the other groups (P < 0.05). The crayfish fed the diets with 0.15% and 0.2% CPP exhibited significantly higher total superoxide dismutase (T-SOD) and glutathione peroxidase (GPx) activities, a significantly increased total antioxidant capacity (T-AOC) and a significantly lower malondialdehyde (MDA) content compared with the other groups (P < 0.05), which indicated that antioxidant capacity was significantly induced by the CPP-supplemented diets. Significantly upregulated expression of immune-related genes (anti-lipopolysaccharide factors (alf), peroxiredoxin (prx5), cathepsin B (ctsb), mitochondrial manganese superoxide dismutase (mtMnsod), cyclophilin A (cypa), glutathione peroxidase (gpx), Toll-like receptor 3 (tlr3), and heat shock protein 70 (hsp70)) was detected in the crayfish fed the diets supplemented with 0.15% and 0.20% CPP diet compared with the levels observed in the control crayfish. These results showed that dietary CPP supplementation greatly improved the growth, immunity and antioxidant capacities of crayfish, and according to the observed results, 0.15%-0.2% is the recommended optimal level of CPP dietary supplementation for crayfish.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/imunologia , Codonopsis/química , Carboidratos da Dieta/metabolismo , Expressão Gênica/imunologia , Imunidade Inata/genética , Polissacarídeos/metabolismo , Ração Animal/análise , Animais , Proteínas de Artrópodes/imunologia , Astacoidea/genética , Astacoidea/crescimento & desenvolvimento , Dieta/veterinária , Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Polissacarídeos/administração & dosagem , Distribuição Aleatória
6.
Environ Sci Pollut Res Int ; 26(6): 5769-5781, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30612364

RESUMO

Sludge treatment beds (STBs) have been used widely in many countries due to low energy consumption, low operating and maintenance costs, and better environmental compatibility. Penetration, evaporation, and transpiration are the main processes for sludge dewatering in STBs. However, the leachate quality from STBs usually cannot meet discharge limits. Moreover, such leachate has very low COD/N ratio, which makes it difficult to treat. In the present study, two subsurface flow (SSF) constructed wetlands (CWs) were investigated for the treatment of leachate from STBs under three different hydraulic retention time (HRT) (3 days, 4 days, 6 days), aiming for evaluating the effects of plants and HRT on treatment performance, as well as the potential of SSF CWs to treat sludge leachate with low COD/N ration. The results showed that plants play an important role in leachate treatment. The best treatment performance was achieved with HRT of 4 days. In this condition, the mean removal efficiencies of COD (chemical oxygen demand), NH4+-N, TN (total nitrogen), and TP (total phosphorus) in the planted and the unplanted CWs were 61.6% (unplanted - 3.7%), 76.6% (unplanted 43.5%), 70% (unplanted 41%), and 65.6% (unplanted 6%), respectively. Heavy metal concentrations were below the Chinese integrated wastewater discharge standard during the experimental period in the planted CW, and the removal efficiencies in the planted CW system were higher than in the unplanted CW system. In all, planted SSF CWs can be an effective approach in removing leachate from sludge treatment beds. Furthermore, considering to temperature and seasonal variation, the leachate from STBs needs to be further studied in pilot- and full-scale condition.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/análise , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Metais Pesados , Nitrogênio/análise , Fósforo/análise , Plantas , Esgotos , Águas Residuárias , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA