Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(3): 347-360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462377

RESUMO

DL-3-n-Butylphthalide (DL-NBP), a small molecular compound extracted from the seeds of Apium graveolens Linn (Chinese celery), has been shown to exert neuroprotective effects due to its anti-inflammatory, anti-oxidative and anti-apoptotic activities. DL-NBP not only protects against ischemic cerebral injury, but also ameliorates vascular cognitive impairment in dementia patients including AD and PD. In the current study, we investigated whether and how DL-NBP exerted a neuroprotective effect against diabetes-associated cognitive decline (DACD) in db/db mice, a model of type-2 diabetes. db/db mice were orally administered DL-NBP (20, 60, 120 mg· kg-1· d-1) for 8 weeks. Then the mice were subjected to behavioral test, their brain tissue was collected for morphological and biochemical analyses. We showed that oral administration of DL-NBP significantly ameliorated the cognitive decline with improved learning and memory function in Morris water maze testing. Furthermore, DL-NBP administration attenuated diabetes-induced morphological alterations and increased neuronal survival and restored the levels of synaptic protein PSD95, synaptophysin and synapsin-1 as well as dendritic density in the hippocampus, especially at a dose of 60 mg/kg. Moreover, we revealed that DL-NBP administration suppressed oxidative stress by upregulating Nrf2/HO-1 signaling, and increased brain-derived neurotrophic factor (BDNF) expression by activating PI3K/Akt/CREB signaling in the hippocampus. These beneficial effects of DL-NBP were observed in high glucose-treated PC12 cells. Our results suggest that DL-NBP may be a potential pharmacologic agent for the treatment of DACD.


Assuntos
Benzofuranos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Dendritos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Hipocampo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sinapses/efeitos dos fármacos
2.
Phytomedicine ; 78: 153319, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32950951

RESUMO

BACKGROUND: Inflammation and oxidative stress play essential roles in the occurrence and progression of diabetic cardiomyopathy (DCM). Isoliquiritigenin (ISL), a natural chalcone, exhibits strong anti-inflammatory and antioxidant activities. HYPOTHESIS/PURPOSE: In this study, we aimed to investigate the protective effects of ISL on DCM using high glucose (HG)-challenged cultured cardiomyocytes and streptozotocin (STZ)-induced diabetic mice. STUDY DESIGN AND METHODS: Embryonic rat heart-derived H9c2 cells challenged with a high concentration of glucose were used to evaluate the anti-inflammatory and antioxidant effects of ISL. STZ-induced diabetic mice were used to study the effects of ISL in DCM in vivo. Furthermore, cardiac fibrosis, hypertrophy, and apoptosis were explored both in vitro and in vivo. RESULTS: ISL effectively inhibited HG-induced hypertrophy, fibrosis, and apoptosis probably by alleviating the inflammatory response and oxidative stress in H9c2 cells. Results from in vivo experiments showed that ISL exhibited anti-inflammatory and antioxidant stress activities that were characterized by the attenuation of cardiac hypertrophy, fibrosis, and apoptosis, which resulted in the maintenance of cardiac function. The protective effects of ISL against inflammation and oxidative stress were mediated by the inhibition of mitogen-activated protein kinases (MAPKs) and induction of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway, respectively. CONCLUSION: Our results provided compelling evidence that ISL, by virtue of neutralizing excessive inflammatory response and oxidative stress, could be a promising agent in the treatment of DCM. Targeting the MAPKs and Nrf2 signaling pathway might be an effective therapeutic strategy for the prevention and treatment of DCM.


Assuntos
Antioxidantes/farmacologia , Chalconas/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Glucose/metabolismo , Glucose/farmacologia , Hiperglicemia/tratamento farmacológico , Hiperglicemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA