Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(16): 24064-24076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438637

RESUMO

The efficient development of selective materials for uranium recovery from wastewater and seawater is crucial for the utilization of uranium resources and environmental protection. The potential of graphene oxide (GO) as an effective adsorbent for the removal of environmental contaminants has been extensively investigated. Further modification of the functional groups on the basal surface of GO can significantly enhance its adsorption performance. In this study, a novel poly(amidoxime-hydroxamic acid) functionalized graphene oxide (pAHA-GO) was synthesized via free radical polymerization followed by an oximation reaction, aiming to enhance its adsorption efficiency for U(VI). A variety of characterization techniques, including SEM, Raman spectroscopy, FT-IR, and XPS, were employed to demonstrate the successful decoration of amidoxime and hydroxamic acid functional groups onto GO. Meanwhile, the adsorption of U(VI) on pAHA-GO was studied as a function of contact time, adsorbent dosage, pH, ionic strength, initial U(VI) concentration, and interfering ions by batch-type experiments. The results indicated that the pAHA-GO exhibited excellent reuse capability, high stability, and anti-interference ability. Specially, the U(VI) adsorption reactions were consistent with pseudo-second-order and Langmuir isothermal adsorption models. The maximum U(VI) adsorption capacity was evaluated to be 178.7 mg/g at pH 3.6, displaying a higher U(VI) removal efficiency compared with other GO-based adsorbents in similar conditions. Regeneration of pAHA-GO did not significantly influence the adsorption towards U(VI) for up to four sequential cycles. In addition, pAHA-GO demonstrated good adsorption capacity stability when it was immersed in HNO3 solution at different concentrations (0.1-1.0 mol/L) for 72 h. pAHA-GO was also found to have anti-interference ability for U(VI) adsorption in seawater with high salt content at near-neutral pH condition. In simulated seawater, the adsorption efficiency was above 94% for U(VI) across various initial concentrations. The comprehensive characterization results demonstrated the involvement of oxygen- and nitrogen-containing functional groups in pAHA-GO in the adsorption process of U(VI). Overall, these findings demonstrate the feasibility of the pAHA-GO composite used for the capture of U(VI) from aqueous solutions.


Assuntos
Grafite , Oximas , Urânio , Urânio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Adsorção , Cinética
2.
Chemosphere ; 231: 405-414, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146132

RESUMO

The release of uranyl from uranium tailing sites is a widely concerned environmental issue, with limited investigations on the effect of coexistence of various colloids. Gibbsite colloids extensively exist, together with ubiquitous humic substances, in uranium polluted waters at tailing sites, due to high concentration of dissolved Al in acid mine drainage. In this context, we investigated the co-transport of U(VI), gibbsite colloids and humic acid (HA) as a function of pH and ionic strength at a U(VI) concentration (5.0 × 10-5 M) relevant within mine tailings and related waste. It was found that, owing to electrostatic attraction, gibbsite colloids and HA associated with each other and transported simultaneously regardless of U(VI) presence. Besides the impact of pH and ionic strength, whether gibbsite colloids facilitated U(VI) transport depended on HA concentration. Gibbsite colloids impeded U(VI) transport at relatively low HA concentration (≤5 mg L-1), because associated colloids loaded with U(VI) were positively charged which favored colloid retention on negatively charged quartz sand in the column. U(VI) together with gibbsite colloids and low concentration HA was completely blocked at natural pH and/or high ionic strength. At relatively high HA concentration (20 mg L-1), however, the associated colloids showed negative zeta potential which facilitated U(VI) transport because of repulsion between negatively charged colloids and quartz sand. Meanwhile, high concentration of HA dramatically accelerated the transport of gibbsite colloids. These results implied that gibbsite colloids might imped U(VI) migration at uranium tailing sites unless the aquifers are enriched with abundant humic substances.


Assuntos
Coloides/química , Substâncias Húmicas/análise , Modelos Químicos , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Água Subterrânea/química , Concentração Osmolar , Porosidade , Quartzo , Dióxido de Silício , Simportadores , Urânio/análise , Água
3.
Water Res ; 147: 350-361, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321825

RESUMO

Remediating uranium contamination becomes a worldwide interest because of increasing uranium release from mining activities. Due to ubiquitous presence of pyrite and the application of iron-based technology, colloidal iron oxy-hydroxides such as akaganéite colloid (AKC) extensively exist in uranium polluted water at uranium tailing sites. In this context, we studied individual and co-transport of U(VI) and AKC in water-saturated sand columns at 50 mg/L AKC and environmentally relevant U(VI) concentrations (5.0 × 10-7 ∼ 5.0 × 10-5 M). It was found that, in addition to the impact of pH and ionic strength, whether AKC facilitated U(VI) transport depended on U(VI) concentration as well. The presence of AKC facilitated U(VI) transport at relatively low U(VI) concentration (5.0 × 10-7 ∼ 5.0 × 10-6 M), which was due to the strong adsorption of U(VI) on AKC and faster transport of AKC than that U(VI) as observed in their individual transport experiments. At relatively high U(VI) concentrations (5.0 × 10-5 M), however, AKC impeded U(VI) transport because U(VI) of high concentration decreased AKC colloidal stability and increased AKC aggregation and attachment. Thus, U(VI) and AKC co-transport was even blocked completely at relatively high pH and ionic strength. The mechanisms behind the co-transport of U(VI) and AKC were also confirmed by assessing the evolutions of aqueous pH and AKC zeta potential and particle size distribution in the column effluents. A two-site non-equilibrium model and a two-site kinetic attachment/detachment model well-described the breakthrough curves of U(VI) and AKC, respectively. Knowledge generated from this study provides a thorough understanding of uranium transport in the absence/presence of AKC, and brings new insights into the influence of contaminant concentration on co-transport in the presence of colloids.


Assuntos
Urânio , Água , Adsorção , Coloides , Compostos Férricos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Porosidade
4.
Biomed Res Int ; 2013: 543294, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23509739

RESUMO

A prototype dual-path microfluidic device (Rheonix CARD) capable of performing simultaneously screening (antigen or antibody) and confirmatory (nucleic acid) detection of pathogens is described. The device fully integrates sample processing, antigen or antibody detection, and nucleic acid amplification and detection, demonstrating rapid and inexpensive "sample-to-result" diagnosis with performance comparable to benchtop analysis. For the chip design, a modular approach was followed allowing the optimization of individual steps in the sample processing process. This modular design provides great versatility accommodating different disease targets independently of the production method. In the detection module, a lateral flow (LF) protocol utilizing upconverting phosphor (UCP) reporters was employed. The nucleic acid (NA) module incorporates a generic microtube containing dry reagents. Lateral flow strips and PCR primers determine the target or disease that is diagnosed. Diagnosis of HIV infection was used as a model to investigate the simultaneous detection of both human antibodies against the virus and viral RNA. The serological result is available in less than 30 min, and the confirmation by RNA amplification takes another 60 min. This approach combines a core serological portable diagnostic with a nucleic acid-based confirmatory test.


Assuntos
Anticorpos/análise , Técnicas Analíticas Microfluídicas/instrumentação , Ácidos Nucleicos/análise , Saliva/metabolismo , Anticorpos/química , Anticorpos Antivirais/análise , Desenho de Equipamento , Infecções por HIV/diagnóstico , Humanos , Fósforo/química , Reação em Cadeia da Polimerase , RNA Viral/análise
5.
Ann N Y Acad Sci ; 1098: 467-75, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17435153

RESUMO

The design of a microfluidic lab-on-a-chip system for point-of-care cancer screening and diagnosis of oral squamous cell carcinoma (OSCC) is presented. The chip is based on determining a approximately 30-gene transcription profile in cancer cells isolated from oral fluid samples. Microfluidic cell sorting using magnetic beads functionalized with an antibody against cancer-specific cell-surface antigens (e.g., epithelial cell adhesion molecule [EpCAM]) is described. A comprehensive cancer diagnostics chip will integrate microfluidic components for cell lysis, nucleic acid extraction, and amplification and detection of a panel of mRNA isolated from a subpopulation of cancer cells contained in a clinical specimen.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Programas de Rastreamento , Procedimentos Analíticos em Microchip , Neoplasias Bucais/diagnóstico , Anticorpos Antineoplásicos/análise , Antígenos de Neoplasias/imunologia , Carcinoma de Células Escamosas/química , Carcinoma de Células Escamosas/patologia , Estudos de Viabilidade , Humanos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/economia , Microfluídica , Neoplasias Bucais/química , Neoplasias Bucais/patologia , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA