Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 13(6): 546-558, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457239

RESUMO

Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.


Assuntos
Rastreamento de Células , Ferritinas , Imageamento por Ressonância Magnética , Células-Tronco Neurais , Ratos Nus , Medula Espinal , Animais , Imageamento por Ressonância Magnética/métodos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/metabolismo , Rastreamento de Células/métodos , Humanos , Ratos , Ferritinas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/diagnóstico por imagem , Transplante de Células-Tronco/métodos , Diferenciação Celular , Traumatismos da Medula Espinal/terapia
2.
Stem Cell Res Ther ; 14(1): 330, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964388

RESUMO

BACKGROUND: A non-invasive imaging technology that can monitor cell viability, retention, distribution, and interaction with host tissue after transplantation is needed for optimizing and translating stem cell-based therapies. Current cell imaging approaches are limited in sensitivity or specificity, or both, for in vivo cell tracking. The objective of this study was to apply a novel ferritin-based magnetic resonance imaging (MRI) platform to longitudinal tracking of human embryonic stem cells (hESCs) in vivo. METHODS: Human embryonic stem cells (hESCs) were genetically modified to stably overexpress ferritin using the CRISPR-Cas9 system. Cellular toxicity associated with ferritin overexpression and manganese (Mn) supplementation were assessed based on cell viability, proliferation, and metabolic activity. Ferritin-overexpressing hESCs were characterized based on stem cell pluripotency and cardiac-lineage differentiation capability. Cells were supplemented with Mn and imaged in vitro as cell pellets on a preclinical 3 T MR scanner. T1-weighted images and T1 relaxation times were analyzed to assess contrast. For in vivo study, three million cells were injected into the leg muscle of non-obese diabetic severe combined immunodeficiency (NOD SCID) mice. Mn was administrated subcutaneously. T1-weighted sequences and T1 mapping were used to image the animals for longitudinal in vivo cell tracking. Cell survival, proliferation, and teratoma formation were non-invasively monitored by MRI. Histological analysis was used to validate MRI results. RESULTS: Ferritin-overexpressing hESCs labeled with 0.1 mM MnCl2 provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, proliferation, pluripotency, and differentiation into cardiomyocytes. Transplanted hESCs displayed significant bright contrast on MRI 24 h after Mn administration, with contrast persisting for 5 days. Bright contrast was recalled at 4-6 weeks with early teratoma outgrowth. CONCLUSIONS: The bright-ferritin platform provides the first demonstration of longitudinal cell tracking with signal recall, opening a window on the massive cell death that hESCs undergo in the weeks following transplantation before the surviving cell fraction proliferates to form teratomas.


Assuntos
Células-Tronco Embrionárias Humanas , Teratoma , Camundongos , Animais , Humanos , Células-Tronco Embrionárias Humanas/patologia , Ferritinas/genética , Camundongos SCID , Imageamento por Ressonância Magnética/métodos , Células-Tronco Embrionárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA