Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(1): e2001451, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135398

RESUMO

Cancer immunotherapy is a cutting-edge strategy that eliminates cancer cells by amplifying the host's immune system. However, the low response rate and risks of inducing systemic toxicity have raised uncertainty in the treatment. Magnetic nanoparticles (MNPs) as a versatile theranostic tool can be used to target delivery of multiple immunotherapeutics and monitor cell/tissue responses. These capabilities enable the real-time characterization of the factors that contribute to immunoactivity so that future treatments can be optimized. The magnetic properties of MNPs further allow the implementation of magnetic navigation and magnetic hyperthermia for boosting the efficacy of immunotherapy. The multimodal approach opens an avenue to induce robust immune responses, minimize safety issues, and monitor immune activities simultaneously. Thus, the object of this review is to provide an overview of the burgeoning fields and to highlight novel technologies for next-generation immunotherapy. The review further correlates the properties of MNPs with the latest treatment strategies to explore the crosstalk between magnetic nanomaterials and the immune system. This comprehensive review of MNP-derived immunotherapy covers the obstacles and opportunities for future development and clinical translation.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Humanos , Magnetismo , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Medicina de Precisão
2.
J Mater Chem B ; 8(25): 5460-5471, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32462165

RESUMO

Metastasis resulting from circulating tumor cells (CTCs) is associated with 90% of all cancer mortality. To disrupt cancer dissemination, therapeutic targeting of CTCs by extracorporeal photodynamic therapy (PDT) has emerged; however, it still remains impractical due to its limited therapeutic window. Herein, we developed a photosensitive and magnetic targeted core-satellite nanomedicine (TCSN) to augment the light-induced damage to the targeted cells. The magnetic nanocore (MNC) with multiple iron oxide nanoparticles stabilized using thiolated polyvinyl alcohol can magnetize the CTCs to achieve magnetic enrichment under a magnetic field. Multiple gold nanocage (AuNC) satellites were conjugated on the MNC to facilitate bimodal photothermal therapy and PDT. Adjusting the thiol content in the MNC allows manipulating the AuNC density on TCSNs, which has been found to demonstrate a density-dependent bimodal phototherapeutic effect under laser irradiation at 808 and 940 nm. Moreover, with the immobilization of anti-epithelial cell adhesion molecule (anti-EpCAM), TCSN exhibited an enhanced affinity toward EpCAM-expressing 4T1 cells. We demonstrate that TCSN-labeled 4T1 cells can be isolated and photo-eradicated in a microfluidic channel with a dynamic flow. Our studies showed that TCSN with the complementary properties of MNC and AuNCs can largely augment the therapeutic window by magnetic enrichment and bimodal phototherapy, serving as an advanced extracorporeal strategy to remove CTCs.


Assuntos
Ouro/farmacologia , Nanopartículas Metálicas/química , Células Neoplásicas Circulantes/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Lasers , Campos Magnéticos , Camundongos , Nanomedicina , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA