Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1244655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860121

RESUMO

Introduction: Prostate cancer is the second leading cause of cancer death among men in the United States. Castration-Resistant Prostate Cancer (CRPC) often develops resistance to androgen deprivation therapy. Resistance in CRPC is often driven by AR variants and glucocorticoid receptor (GR). Thus, drugs that target both could be vital in overcoming resistance. Methods: Utilizing the STAR Drug Discovery Platform, three hundred medicinal plant extracts were examined across 25 signaling pathways to identify potential drug candidates. Effects of the botanical drug YIV-818-A, derived from optimized water extracts of Rubia cordifolia (R.C.), on Dihydrotestosterone (DHT) or Dexamethasone (DEX) induced luciferase activity were assessed in 22RV1 cells harboring the ARE luciferase reporter. Furthermore, the key active compounds in YIV-818-A were identified through activity guided purification. The inhibitory effects of YIV-818-A, RA-V, and RA-VII on AR and GR activities, their impact on AR target genes, and their roles in modifying epigenetic status were investigated. Finally, the synergistic effects of these compounds with established CRPC drugs were evaluated both in vitro and in vivo. Results: YIV-818-A was found to effectively inhibit DHT or DEX induced luciferase activity in 22RV1 cells. Deoxybouvardin (RA-V) was identified as the key active compound responsible for inhibiting AR and GR activities. Both YIV-818-A and RA-V, along with RA-VII, effectively downregulated AR and AR-V proteins through inhibiting protein synthesis, impacted the expression of AR target genes, and modified the epigenetic status by reducing levels of Bromodomain and Extra-Terminal proteins (Brd2/Brd4) and H3K27Ac. Furthermore, these compounds exhibited synergistic effects with apalutamide, darolutamide, or enzalutamide, and suppressed AR mediated luciferase activity of 22RV1 cells. Co-administration of YIV-818-A and enzalutamide led to a significant reduction of 22RV1 tumor growth in vivo. Different sources of R.C. had variable levels of RA-V, correlating with their potency in AR inhibition. Discussion: YIV-818-A, RA-V, and RA-VII show considerable promise in addressing drug resistance in CRPC by targeting both AR protein and GR function, along with modulation of vital epigenetic markers. Given the established safety profile of YIV-818-A, these findings suggest its potential as a chemopreventive agent and a robust anti-prostate cancer drug.

2.
Front Pharmacol ; 13: 1095186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686648

RESUMO

YIV-906 is a systems biology botanical cancer drug, inspired by a traditional Chinese herbal formulation. Results from eight Phase I/II to II clinical studies demonstrated the potential of YIV-906 to prolong survival and improve the quality of life of cancer patients. As an immunomodulator in the tumor microenvironment, YIV-906 can turn cold tumors hot and potentiate anti-tumor activity for different classes of anticancer agents; and as a cytoprotector in the GI, YIV-906 can reduce non-hematological side effects and speed up damaged tissue recovery. YIV-906 enhanced anti-PD1 action against hepatoma in mice by stimulating both innate and adaptive immunity. In a Jurkat cell-staphylococcal superantigen E (SEE)-Raji cell culture model, YIV-906 promoted T cell activation with upregulation of CD69 by enhancing NFAT activity, with or without PD1-PD-L1 interaction. YIV-906 could trigger the phosphorylation of TCR downstream signaling cascades without the involvement of TCR. YIV-906 could inhibit SHP1 and SHP2 activities, which dephosphorylates TCR downstream proteins due to the PD1-PD-L1 interaction. Therefore, YIV-906 could enhance anti-PD1 action to rescue the depressed NFAT activity of Jurkat cells due to the PD1-PD-L1 interaction. In addition, YIV-906 enhanced the NFAT activity and killing capability of Jurkat cells expressing chimeric antigen receptor (CAR-CD19-CD3z) toward CD19 expressing cells, such as Raji cells, with or without PD1-PD-L1 overexpression. Ingredient herb S (Scutellaria baicalensis Georgi) of YIV-906 and some S compounds were found to play key roles in these activities. In conclusion, YIV-906 modulates adaptive immunity by activating T effector cells mainly through its action on SHP1/2. YIV-906 could also facilitate immune checkpoint blockade therapy or CAR-T cell therapy for cancer treatment.

3.
Sci Rep ; 11(1): 13482, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188068

RESUMO

YIV-906 (PHY906) is a standardized botanical cancer drug candidate developed with a systems biology approach-inspired by a traditional Chinese herbal formulation, historically used to treat gastrointestinal symptoms including diarrhea, nausea and vomiting. In combination with chemotherapy and/or radiation therapy, preclinical and clinical results suggest that YIV-906 has the potential to prolong survival and improve quality of life for cancer patients. Here, we demonstrated that YIV-906 plus anti-PD1 could eradicate all Hepa 1-6 tumors in all tumor bearing mice. YIV-906 was found to have multiple mechanisms of action to enhance adaptive and innate immunity. In combination, YIV-906 reduced PD1 or counteracted PD-L1 induction caused by anti-PD1 which led to higher T-cell activation gene expression of the tumor. In addition, YIV-906 could reduce immune tolerance by modulating IDO activity and reducing monocytic MDSC of the tumor. The combination of anti-PD1 and YIV-906 generated acute inflammation in the tumor microenvironment with more M1-like macrophages. YIV-906 could potentiate the action of interferon gamma (IFNg) to increase M1-like macrophage polarization while inhibiting IL4 action to decrease M2 macrophage polarization. Flavonoids from YIV-906 were responsible for modulating IDO activity and potentiating IFNg action in M1-like macrophage polarization. In conclusion, YIV-906 could act as an immunomodulator and enhance the innate and adaptive immune response and potentiate anti-tumor activity for immunotherapies to treat cancer.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Carcinoma Hepatocelular/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Imunidade Inata/efeitos dos fármacos , Neoplasias Hepáticas/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Neoplasias Hepáticas/dietoterapia , Camundongos , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia
4.
Front Pharmacol ; 11: 615287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33716728

RESUMO

During the outbreak of the novel coronavirus disease (COVID-19), the Chinese government took a series of public health measures to tackle the outbreak and recommended six traditional Chinese medicine (TCM) evolved formulas, collectively referred to as "3-drugs-3-formulas", for the treatment. In this prospective article, we will discuss how these six formulas evolved from TCM and what their underlying mechanisms of actions may be by evaluating the historical usage of the component formulas, the potential targeted pathways for the individual herbs used by STAR (signal transduction activity response) database from our laboratory, and the pathogenesis of COVID-19. Five of the six recommended formulas are administered orally, while the sixth is taken as an injection. Five classic categories of herbs in the six formulas including "Qing-Re", "Qu-Shi", "Huo-Xue", "Bu-Yi" and "Xing-Qi" herbs are used based on different stages of disease. All five oral formulas build upon the core formula Maxingshigan Decoction (MD) which has anti-inflammatory and perhaps antiviral actions. While MD can have some desired effects, it may not be sufficient to treat COVID-19 on its own; consequently, complementary classic formulas and/or herbs have been added to potentiate each recommended formula's anti-inflammatory, and perhaps anti-renin-angiotensin system (RAS)-mediated bradykinin storm (RBS) and antiviral effects to address the unique medical needs for different stages of COVID-19. The key actions of these formulas are likely to control systemic inflammation and/or RBS. The usage of Chinese medicine in the six formulas is consistent with the pathogenesis of COVID-19. Thus, an integrative systems biology approach-combining botanical treatments of conventional antiviral, anti-inflammatory or anti-RBS drugs to treat COVID-19 and its complications - should be explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA