Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552377

RESUMO

BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Catequina , Dieta Hiperlipídica , Janus Quinase 2 , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3 , Animais , Catequina/farmacologia , Catequina/análogos & derivados , Camundongos , Fator de Transcrição STAT3/metabolismo , Adipogenia/efeitos dos fármacos , Janus Quinase 2/metabolismo , Adipócitos/efeitos dos fármacos , Masculino , Mitose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Obesidade/tratamento farmacológico , PPAR gama/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
J Neurosci ; 43(18): 3219-3231, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37001993

RESUMO

The mechanoelectrical transduction (MET) protein complex in the inner-ear hair cells is essential for hearing and balance perception. Calcium and integrin-binding protein 2 (CIB2) has been reported to be a component of MET complex, and loss of CIB2 completely abolishes MET currents in auditory hair cells, causing profound congenital hearing loss. However, loss of CIB2 does not affect MET currents in vestibular hair cells (VHCs) as well as general balance function. Here, we show that CIB2 and CIB3 act redundantly to regulate MET in VHCs, as MET currents are completely abolished in the VHCs of Cib2/Cib3 double knock-out mice of either sex. Furthermore, we show that Cib2 and Cib3 transcripts have complementary expression patterns in the vestibular maculae, and that they play different roles in stereocilia maintenance in VHCs. Cib2 transcripts are highly expressed in the striolar region, and knock-out of Cib2 affects stereocilia maintenance in striolar VHCs. In contrast, Cib3 transcripts are highly expressed in the extrastriolar region, and knock-out of Cib3 mainly affects stereocilia maintenance in extrastriolar VHCs. Simultaneous knock-out of Cib2 and Cib3 affects stereocilia maintenance in all VHCs and leads to severe balance deficits. Taken together, our present work reveals that CIB2 and CIB3 are important for stereocilia maintenance as well as MET in mouse VHCs.SIGNIFICANCE STATEMENT Calcium and integrin-binding protein 2 (CIB2) is an important component of mechanoelectrical transduction (MET) complex, and loss of CIB2 completely abolishes MET in auditory hair cells. However, MET is unaffected in Cib2 knock-out vestibular hair cells (VHCs). In the present work, we show that CIB3 could compensate for the loss of CIB2 in VHCs, and Cib2/Cib3 double knock-out completely abolishes MET in VHCs. Interestingly, CIB2 and CIB3 could also regulate VHC stereocilia maintenance in a nonredundant way. Cib2 and Cib3 transcripts are highly expressed in the striolar and extrastriolar regions, respectively. Stereocilia maintenance and balance function are differently affected in Cib2 or Cib3 knock-out mice. In conclusion, our data suggest that CIB2 and CIB3 are important for stereocilia maintenance and MET in mouse VHCs.


Assuntos
Células Ciliadas Vestibulares , Animais , Camundongos , Cálcio/metabolismo , Células Ciliadas Vestibulares/metabolismo , Integrinas , Camundongos Knockout , Estereocílios/metabolismo
3.
Huan Jing Ke Xue ; 43(10): 4789-4800, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224164

RESUMO

The inoculation of antibiotic-degrading bacteria into manure could promote the removal of antibiotics during composting. However, knowledge on the impact of inoculating these antibiotic-degrading bacteria on the composting process and indigenous microbial community succession is still limited. This study assessed the antibiotic removal efficiency in pig manure after inoculating a microbial inoculum with antibiotic-degrading bacteria as the key component. The effect of inoculating this microbial inoculum on the physicochemical dynamics and the succession of the manure bacterial community during composting was also analyzed. The results showed that the antibiotic degradation in pig manure reached 81.95% after inoculating the microbial inoculum. When compared with that in the control, the total concentration of antibiotic residues in manure with the microbial agent inoculated was decreased by 42.18%. During composting, inoculating the microbial inoculum accelerated the temperature rise of compost, favored water loss, and alleviated the release of NH3 and H2S. Moreover, the total nutrient content (nitrogen, phosphorus, and potassium) in the final compost and the germination index of radish seeds increased by 6.80% and 68.33%, respectively, after inoculating this microbial inoculum. Furthermore, inoculating the microbial inoculum increased the content of stable organic carbon in the final compost and decreased the content of recalcitrant substances such as cellulose and hemicellulose. The analysis of the manure bacterial community showed that inoculating the microbial inoculum increased the relative abundances of Actinomycetes and Firmicutes in the compost. In particular, the thermophilic bacteria that was positively related to the compost temperature was increased significantly (P<0.01) after inoculating the microbial inoculum, whereas the relative abundance of pathogenic bacteria was correspondingly decreased. Network analysis of the bacterial coexistence pattern showed that inoculating this microbial inoculum also changed the interaction pattern of indigenous manure bacterial communities, which greatly reduced the complexity and connectivity of the bacterial interaction and improved the ecological relationship between beneficial bacteria and other bacterial communities. The effect of this microbial inoculum on the interaction with manure bacterial community laid a foundation for the establishment of a new and healthier composting bacterial community. This study provides a scientific basis for the application and development of multifunctional antibiotic-degrading microbial agents in manure treatments.


Assuntos
Compostagem , Animais , Antibacterianos/análise , Bactérias , Carbono , Celulose , Esterco/microbiologia , Nitrogênio/análise , Fósforo , Potássio , Solo , Suínos , Água/análise
4.
J Ethnopharmacol ; 298: 115600, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970313

RESUMO

ETHNOPHARMACOLOGICAL EVIDENCE: The anti-inflammatory effect of Dan-Lou tablets (DLT) have been reported; however, the signaling pathways involved and their role in foam cell formation remains unclear. AIM OF THE STUDY: The purpose of this study was to determine the molecular target and mechanism of DLT in the treatment of coronary heart disease (CHD), and investigate the role of DLT in inhibiting foam cell formation and the anti-inflammatory effects of RAW 264.7 macrophages. MATERIALS AND METHODS: This study explored and elucidated the main active components, therapeutic targets, and pharmacological mechanisms of DLT treatment for CHD using network pharmacology. Secondly, the accuracy of the interaction of key active compounds with key proteins was verified by molecular docking analysis. Eight chemical compositions were determined from the ethanol extract of DLT (EEDL) by high-performance liquid chromatography. Finally, this study used EEDL intervention with oxidized low-density lipoprotein (ox-LDL) to induce RAW264.7 macrophages to verify the results of network pharmacology. RESULTS: According to network pharmacological analysis, 269 common targets of DLT and CHD were obtained from an online database, and 24 key targets were obtained from further analysis. GO enrichment and KEGG analyses were performed, mainly involving the cAMP, cGMP-PKG, MAPK, and NF-κB signaling pathways, and vascular smooth muscle contraction. Molecular docking showed that the active components in DLT docked well with MyD88, NF-κB, and p38 MAPK. The eight compounds from the EEDL have been identified as gallic acid, salvianolic acid, puerarin, daidzein, paeoniflorin, salvianolic acid B, cryptotanshinone, and tanshinone IIA with concentrations of 4.62, 4.76, 23.73, 34.24, 14.59, 21.69, 0.34, and 0.47 µg/mg, respectively. Further in vitro experiments showed that the levels of MyD88 and p-p38 MAPK in RAW 264.7 macrophages induced by ox-LDL increased noticeably. Stimulating the NF-κB signaling pathway increased the release of pro-flammatory factors (TNF-α and IL-1ß) and strengthened the inflammatory response (P < 0.05 or P < 0.01), while the levels of MyD88, p38 MAPK, NF-κB, TNF-α, and IL-1ß decreased after EEDL treatment (P < 0.05 or P < 0.01). CONCLUSION: The study demonstrated that the anti-inflammatory activity of the DLT intervention of ox-LDL-induced RAW 264.7 macrophages may involve the MyD88/p38 MAPK/NF-κB signaling pathway.


Assuntos
Fator 88 de Diferenciação Mieloide , NF-kappa B , Animais , Anti-Inflamatórios/química , Lipoproteínas LDL/metabolismo , Macrófagos , Camundongos , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Comprimidos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Phytomedicine ; 104: 154305, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792446

RESUMO

BACKGROUND: Recent studies have shown that plasma trimethylamine-N-oxide (TMAO) level is highly correlated with the risk of atherosclerosis (AS), and the elevated level is significantly positively correlated with the incidence of AS. PURPOSE: The purpose of this article is to offer a useful summary of the correlation between TMAO and AS, and the effect of herbal monomers, herbal extracts, and formulas on anti-atherosclerosis mediated by TMAO. METHOD: The data contained in this article comes from PubMed, Web of Science, and China National Knowledge Infrastructure. RESULTS: This review discusses the main mechanism of AS induced by TMAO, including endothelial dysfunction, macrophage foaming, platelet reactivity, and cholesterol metabolism, and summarizes 6 herb monomers, 5 herb extracts, and 2 formulas that have been tested for their anti-TMAO activity. CONCLUSION: The current understanding of possible ways to reduce TMAO generation is discussed, with the effect and potential of herb monomers, herb extracts, and formulas highlighted.


Assuntos
Aterosclerose , Medicina Tradicional Chinesa , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Humanos , Metabolismo dos Lipídeos , Metilaminas/metabolismo
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(6): 626-630, 2022 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-35762427

RESUMO

OBJECTIVES: To evaluate the effectiveness of induction therapy with exclusive enteral nutrition (EEN) in pediatric Crohn's disease (CD). METHODS: A retrospective analysis was performed on the medical data of 62 children with CD who received EEN in Children's Hospital, Zhejiang University School of Medicine, from March 2013 to August 2021. The medical data included general information and height, weight, Pediatric Crohn's Disease Activity Index (PCDAI), Crohn's Disease Endoscopic Index of Severity, C-reactive protein, erythrocyte sedimentation rate, and serum albumin level before treatment and after 8 weeks of treatment. The changes in the above indicators were compared before and after treatment. RESULTS: Among the 62 children with CD, there were 39 boys (63%) and 23 girls (37%), with a mean age of (11.9±3.0) years at diagnosis. Among the 55 children who completed EEN treatment for at least 8 weeks, 48 (87%) achieved clinical remission at week 8. PCDAI at week 8 was significantly lower than that before treatment (P<0.001). Except for 17 children with involvement of the small intestine alone and 3 children with involvement of the colon who did not receive colonoscopy reexamination, the remaining 35 children with involvement of the colon received colonoscopy reexamination after the 8-week EEN treatment. Of the 35 children, 29 (83%) achieved mucosal healing. As for the 48 children who achieved clinical remission at week 8, there were significant improvements in height-for-age Z-score and body mass index-for-age Z-score at week 8 (P<0.01). As for the 7 children who did not achieve clinical remission at week 8, there were no significant changes in height-for-age Z-score and body mass index-for-age Z-score at week 8 (P>0.05). CONCLUSIONS: The 8-week EEN treatment has a good effect on clinical remission and mucosal healing in children with CD. For the children with CD achieving clinical remission, EEN can improve their height and body mass index.


Assuntos
Doença de Crohn , Nutrição Enteral , Adolescente , Criança , Doença de Crohn/terapia , Feminino , Humanos , Quimioterapia de Indução , Masculino , Estudos Retrospectivos
7.
Huan Jing Ke Xue ; 43(4): 1976-1987, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393821

RESUMO

The overwinter period is the pre-stage of the algal bloom, and the endogenous phosphorus (P) in sediments is one of the main P sources of algal blooms during this period. Based on the investigation of the water quality and sediment pollutants during the overwinter period of cyanobacteria (recruitment period and dormancy period), this study analyzed the P release characteristics of sediments in the horizontal and vertical directions and clarified the P release risk of sediments and the change in microbial community structures. The results showed that the lake bay was moderately eutrophic in the two periods of the study area, and the water quality and sediment nitrogen and P pollution were more serious, and the chlorophyll a content (Chl-a) was still at a high level in the overwinter period. The pseudo-second order model and the modified Langmuir model could respectively describe the P kinetics and sorption isotherm behavior in the sediment. The theoretical maximum P sorption capacities (Qmax) of sediments were bottom layer>middle layer>surface layer, and the highest value was 1.648 mg·g-1 with the highest P sorption rate constant of the pseudo second-order kinetic model of 6.292 g·(mg·min)-1. Additionally, the P adsorption parameters (Qmax, NAP, and EPC0) were mainly affected by the physical and chemical properties of the sediment itself and the nutritional level of the lake bay. The surface sediments from the dormancy period mainly played the role of P sinks, and the part of sediments from the recruitment period played the role of P sources, in which existed the risk of endogenous P release. The analysis of the microbial community structure in sediments indicated that the microbial diversity in the sediments during the dormancy period was higher than that during the recruitment period, and some microbial categories with phosphate-solubilizing function of relative abundance was high.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Adsorção , Baías , China , Clorofila A/análise , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise , Poluentes Químicos da Água/análise
8.
Front Plant Sci ; 12: 791219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003182

RESUMO

With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.

9.
Phytother Res ; 35(3): 1237-1247, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33350538

RESUMO

Mental health condition is including depression and anxiety, and they may impact wellbeing, personal relationships and productivity of both genders. Herbal medicines have been used to treatment of anxiety and depression symptoms for centuries. SARS, MERS and COVID-19 are related to coronavirus types. SARS (sever acute respiratory syndrome, China, 2002), MERS (Middle East respiratory syndrome, Saudi Arabia, 2012), and SARS-CoV-2 (2019-2020) are the main coronavirus outbreaks. Both anxiety and depression are more serious to be considered and improved for all general public during fight with these diseases. In this mini-review article, we have mentioned the key role some of the most important plants and herbs for treatment of stress and anxiety and improve mental health against SARS and SARS-CoV-2 on the basis of traditional Asian medicine, especially traditional Chinese and Persian medicine.


Assuntos
Ansiedade/tratamento farmacológico , COVID-19/psicologia , Infecções por Coronavirus/psicologia , Surtos de Doenças , Saúde Mental , Preparações de Plantas/uso terapêutico , Síndrome Respiratória Aguda Grave/psicologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Plantas Medicinais , SARS-CoV-2
10.
Mini Rev Med Chem ; 21(6): 724-730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33245271

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a native plant found in the parts of Iran to the North of India, and is presently planted also in other regions of the world. Fenugreek is considered a notable multipurpose medicinal and traditional herb in Iran, India, and China for several centuries. The most important components of fenugreek seeds are protein, neutral detergent fiber, gum, lipids, moisture, ash and starch. Fenugreek seeds and leaves are anti-cholesterolemic, anti-tumor, antiinflammatory, carminative, demulcent, deobstruent, emollient, expectorant, galactogogue, febrifuge, laxative, hypoglycaemic, restorative, parasiticide and uterine tonic and useful in burning sensation. Traditionally, fenugreek seeds being used worldwide are beneficial for bone and muscles, respiratory system, gastro-intestinal system, female reproductive system, cardio-vascular system, endocrinology and hepatic. Fenugreek helps reduce cholesterol, reduce cardiovascular risk, control diabetes, a good consolation for sore throats, a remedy for acid reflux, constipation, colon cancer prevention, appropriate for kidney trouble, skin infection, increase milk production, reduce menstrual discomfort, and reduce menopause symptoms. It is also an appetite suppressant that helps in weight loss. Both modern science and traditional medicine integration with novel technologies and discoveries will secure the cultivation of medicinal herbs and promote sustainability in the long-term and a wide-range.


Assuntos
Medicina Tradicional/história , Extratos Vegetais/química , Trigonella/química , Depressores do Apetite/química , Depressores do Apetite/isolamento & purificação , Depressores do Apetite/farmacologia , Doenças Cardiovasculares/prevenção & controle , História Antiga , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Sementes/química , Sementes/metabolismo , Trigonella/metabolismo , Redução de Peso/efeitos dos fármacos
11.
Chin J Nat Med ; 18(10): 770-778, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33039056

RESUMO

Panax ginseng and Panax quinquefolius have similar bioactive components and morphological characteristics, but they are known to have different medicinal values, high-sensitive and accurate method is expected to identify the sources of ginseng products and evaluate the quality, but with a huge challenge. Our established UHPLC-TOF/MS method coupled with orthogonal partial least squares discriminant analysis (OPLS-DA) model based on 18 ginsenosides was applied to discriminate the sources of raw medicinal materials in ginseng products, and nested PCR strategy was used to discover 6 novel single nucleotide polymorphism (SNP) sites in functional dammarenediol synthase (DS) gene for genetic authentication of P. ginseng and P. quinquefolius for the first time. OPLS-DA model could identify the sources of raw ginseng materials are real or not. SNP markers were applied to identify ginseng fresh samples as well as commercial products, and proved to be successful. This established molecular method can tell exact source information of adulterants, and it was highly sensitive and specific even when total DNA amount was only 0.1 ng and the adulteration was as low as 1%. Therefore, this study made an attempt at the exploration of new type SNP marker for variety authentication and function regulation at the same time, and the combination of chemical and molecular discrimination methods provided the comprehensive evaluation and authentication for the sources of ginseng herbs and products.


Assuntos
Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Ginsenosídeos/análise , Panax/genética , Polimorfismo de Nucleotídeo Único , Medicamentos de Ervas Chinesas/normas , Marcadores Genéticos , Panax/química
12.
Luminescence ; 35(2): 321-327, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31837194

RESUMO

Tea, originating from China, is an important part of Chinese traditional culture. There are different qualities of and producing areas for tea on the market, therefore it is necessary to discriminate between teas in a fast and accurate way. In this study, a chemical sensor array based on nanozymes was developed to discriminate between different metal ions and teas. The indicators for the sensor array are three kinds of nanozymes mimicking laccase (Cu-ATP, Cu-ADP, Cu-AMP). The as-developed sensor array successfully discriminated 12 metal ions and the detection limit was as low as 0.01 µM. The as-developed sensor array was also able to discriminate tea samples. Different kinds of tea samples appeared in different areas in the canonical score plot with different response patterns. Furthermore, in a blind experiment, we successfully discriminated 12 samples with a 100% accuracy. This sensor array integrates chemistry and food science together, realizing the simultaneous detection of several kinds of teas using a sensitive method. The as-developed sensor array would have an application in the tea market and provide a fast and easy method to discriminate between teas.


Assuntos
Colorimetria , Lacase/metabolismo , Metais Alcalinoterrosos/metabolismo , Metais Pesados/metabolismo , Nanopartículas/metabolismo , Chá/metabolismo , Lacase/síntese química , Lacase/química , Metais Alcalinoterrosos/análise , Metais Pesados/análise , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície , Chá/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-35198030

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease. The Hugan Qingzhi formula (HGQZ) has been proven effective in treating NAFLD through clinical and pharmacological mechanism studies. A screening study of the chemical components was carried out to better control the quality of this formula. Current research has combined biological activity assessment with chemical analysis to screen and identify the bioactive compounds in HGQZ for use as potential quality markers (Q-markers) to control the quality of this herbal product. The HGQZ extracted by three different solvents was evaluated in a free fatty acid-induced hepatic steatosis LO2 cell model. Simultaneously, the twelve major chemical constituents of these extracts were quantitatively measured by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). Extraction with 50% ethanol showed the most potent lipid-lowering effect in steatosis LO2 cells and the highest extraction rate of major chemical constituents. Correlation analysis was used to establish the relationship between the biological activities and chemical characteristics of these extracts. The results showed that the contents of typhaneoside, hyperoside, isoquercitrin, isorhamnetin-3-O-neohesperidoside, notoginsenoside R1, and alisol B 23-acetate were positively correlated to the lipid-lowering effect. The subsequent bioassay confirmed that typhaneoside, isoquercitrin, and alisol B 23-acetate played the role of reducing the lipid effect. In conclusion, 50% of ethanol extraction produced the most active extract of HGQZ. Typhaneoside, isoquercitrin, and alisol B 23-acetate could be considered potential Q-markers for the quality control of HGQZ.

14.
Curr Med Sci ; 39(2): 337-342, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31016531

RESUMO

Calcium carbonates are commonly administered as supplements for conditions of calcium deficiency. We report here pharmacokinetic characteristics of a novel formulation, calcium carbonate compound granules (CCCGs), forming complexes of calcium carbonate and calcium citrate in water. CCCGs were compared to a kind of commonly-used calcium carbonate D3 preparation (CC) in the market in 5-week-old mice that had been treated with omeprazole, to suppress gastric acid secretion, and in untreated control mice. The results showed that: (1) CCCGs had better water solubility than CC in vitro; (2) In control mice, calcium absorption rates after CCCGs administration were comparable to those after CC administration; (3) Inhibition of gastric acid secretion did not affect calcium absorption after CCCGs, but moderately decreased it after CC; (4) The presence of phytic acid or tannin did not affect calcium absorption rates after CCCGs but did for CC; and (5) In normal mice, CCCGs did not inhibit gastric emptying and intestinal propulsion, and did not alter the gastrointestinal hormones. The results suggest that CCCGs may be therapeutically advantageous over more commonly used calcium supplement formulations, particularly for adolescents, because of their stable calcium absorption characteristics and their relatively favorable adverse effect profile.


Assuntos
Carbonato de Cálcio/metabolismo , Ácido Gástrico/metabolismo , Animais , Cálcio da Dieta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Stem Cell Res Ther ; 10(1): 20, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635051

RESUMO

BACKGROUND: Cardiotoxicity remains an important concern in drug discovery and clinical medication. Meanwhile, Sophora tonkinensis Gapnep. (S. tonkinensis) held great value in the clinical application of traditional Chinese medicine, but cardiotoxic effects were reported, with matrine, oxymatrine, cytisine, and sophocarpine being the primary toxic components. METHODS: In this study, impedance and extracellular field potential (EFP) of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were recorded using the cardio non-labeled cell function analysis and culture system (Cardio-NLCS). The effects of matrine, oxymatrine, cytisine, and sophocarpine (2, 10, 50 µM) on cell viability; level of lactate dehydrogenase (LDH), creatine kinase MB isoenzyme (CK-MB), and cardiac troponin I (CTn-I); antioxidant activities; production of reactive oxygen species (ROS) and malondialdehyde (MDA); and disruption of intracellular calcium homeostasis were also added into the integrated assessment. RESULTS: The results showed that matrine and sophocarpine dose-dependently affected both impedance and EFP, while oxymatrine and cytisine altered impedance significantly. Our study also indicated that cardiotoxicity of matrine, oxymatrine, cytisine, and sophocarpine was related to the disruption of calcium homeostasis and oxidative stress. Four alkaloids of S. tonkinensis showed significant cardiotoxicity with dose dependence and structural cardiotoxicity synchronized with functional changes of cardiomyocytes. CONCLUSIONS: This finding may provide guidance for clinical meditation management. Furthermore, this study introduced an efficient and reliable approach, which offers alternative options for evaluating the cardiotoxicity of the listed drugs and novel drug candidates.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Alcaloides/efeitos adversos , Alcaloides/farmacologia , Azocinas/efeitos adversos , Azocinas/farmacologia , Cardiotoxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Líquido Extracelular/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Quinolizinas/efeitos adversos , Quinolizinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sophora/química , Matrinas
16.
Oncol Lett ; 16(6): 6930-6939, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30546425

RESUMO

Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and caused cell cycle arrest in the S phase. The published results also demonstrated that CMF-induced apoptosis was involved in mitochondrial dysfunction. The aim of the present study was to investigate the anti-invasion and anti-metastasis effects of CMF in NCI-H1299 and Lewis lung cancer (LLC) cell lines, which have high metastatic potential. MTT and clone formation assays were initially used to investigate the inhibitory effect of CMF on the viability of NCI-H1299 and LLC cells. The results of cell adhesion, wound healing, migration and Matrigel invasion assays in vitro indicated that NCI-H1299 cells (treated with 1, 3, 10 or 30 µg/ml CMF) and LLC cells (treated with 0.1, 0.3, 1 or 3 µg/ml CMF) demonstrated a concentration-dependent reduction in cell migration and invasion compared with the control. In vivo experiments demonstrated that the oral administration of CMF (65, 130 or 260 mg/kg) decreased the tumor growth and decreased the lung and liver metastasis in an LLC xenograft model, compared with untreated mice. Furthermore, western blot analysis was used to investigate the mechanism of the effect of CMF on the migration of NCI-H1299 cells and metastasis in the xenograft model. The results revealed that CMF may promote glycogen synthase kinase 3ß (GSK-3ß)-mediated degradation of ß-catenin inhibited the phosphorylation of upstream protein kinase B (Akt), which resulted in the attenuation of the expression of matrix metalloproteinase (MMP)-2 and MMP-9. These results suggested that CMF may possess potential for the treatment of lung cancer metastasis via the Akt/GSK-3ß/ß-catenin pathway.

17.
BMC Gastroenterol ; 18(1): 147, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285651

RESUMO

BACKGROUND: This study is to investigate the association between the hepatic expression of Yin Yang 1 (YY1) and the progression of non-alcoholic fatty liver disease (NAFLD) in patients undergoing bariatric surgery. METHODS: Obese patients undergoing bariatric surgery were included. Liver tissues were subjected to the quantitative real-time PCR, Western blot analysis, and immunohistochemical assay, to determine the expression levels of YY1. RESULTS: Totally 88 patients were included. According to the NAFLD activity score (NAS), these patients were divided into the control (n = 12), steatosis (n = 20), non-defining NASH (n = 38), and NASH (n = 18) groups. Significant differences in the serum glucose, insulin, ALT, AST, and HOMA-IR levels were observed among these different NAFLD groups. Hepatic YY1 expression had correlation with serum glucose, insulin, HOMA-IR, ALT, AST, triglycerides, HDL, and GGT. Immunohistochemical analysis showed that, compared with the control group, the expression levels of YY1 were significantly higher in the non-defining NASH and NASH groups. In addition, multivariate regression model showed that the serum ALT and YY1 levels were strongly associated with the NAFLD activity. CONCLUSIONS: Several factors are associated with NAFLD progression, including the expression of YY1. Our findings contribute to understanding of the pathogenesis of NAFLD. TRIAL REGISTRATION: NCT03296605 , registered on September 28, 2017.


Assuntos
Cirurgia Bariátrica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Fator de Transcrição YY1/metabolismo , Adulto , Progressão da Doença , Feminino , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/metabolismo , Adulto Jovem
18.
Chin J Nat Med ; 16(10): 749-755, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30322608

RESUMO

To accelerate the breeding process of cultivated Ophiocordyceps sinensis and increase its yield, it is important to identify molecular fingerprint of dominant O. sinensis. In the present study, we collected 3 batches of industrially cultivated O. sinensis product with higher yield than the others and compared their internal transcribed spacer (ITS) sequences with the wild and the reported. The ITS sequence was obtained by bidirectional sequencing and analyzed with molecular systematics as a DNA barcode for rapid and accurate identification of wild and cultivated O. sinensis collected. The ITS sequences of O. sinensis with detailed collection loci on NCBI were downloaded to construct a phylogenetic tree together with the sequences obtained from the present study by using neighbor-joining method based on their evolution relationship. The information on collection loci was analyzed with ArcGIS 10.2 to demonstrate the geographic distribution of these samples and thus to determine the origin of the dominant samples. The results showed that all wild and cultivated samples were identified as O. sinensis and all sequences were divided into seven phylogenetic groups in the tree. Those groups were precisely distributed on the map and the process of their system evolution was clearly presented. The three cultivated samples were clustered into two dominant groups, showing the correlation between the industrially cultivated samples and the dominant wild samples, which can provide references for its optimized breeding in the future.


Assuntos
DNA Fúngico/genética , DNA Intergênico/genética , Hypocreales/crescimento & desenvolvimento , Hypocreales/genética , Filogenia , Cruzamento , Genes Fúngicos Tipo Acasalamento , Hypocreales/química , Hypocreales/classificação
19.
J Nanosci Nanotechnol ; 18(10): 6949-6956, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954515

RESUMO

Nitrogen doped carbon nanocage with graphitic shell (NGCS) was fabricated through in-situ solid reaction between calcium acetate and dicyandiamide in an inert atmosphere followed by acid etching. The role played by the calcium acetate (Ca(Ac)2) and dicyandiamide (DCD) during the synthesis process is one-stone-two-birds. Calcium acetate plays multiple functions: template agent, graphitization catalyst, and carbon source. Dicyandiamide can be considered as the nitrogen sources and the chemical reaction agent that can be reacted with calcium acetate to form it into CaCN2. The NGCS obtained at 800 °C has a specific surface area of 420 m2/g and nitrogen content of 8.87 at%. The excellent electrochemical performance can be attributed to the combination effects of porous structure, nitrogen doping and graphitized nanocage shell of NGCS electrode. The hollow structure serves as the reservoir for fast electrolyte ion supplement. Nitrogen groups not only improve the wettability of interfaces between carbon surface and electrolyte, but also generate extra pseudocapacitance through redox reaction. The graphitic carbon nanocage shell can enhance the conductivity and facilitates the fast charge transfer. At a current density of 0.5 A/g, the specific capacitance of the NGCS-800 electrode is 215 F/g. Furthermore, the NGCS-800 electrode exhibits excellent rate capability (80% capacitance retention at 10 A/g) and outstanding cycling stability (96.89% capacitance retention after 5000 cycles). These intriguing results demonstrate that nitrogen doped carbon with graphitic shell will be highly promising as electrode materials for supercapacitors and other energy storage and conversation applications.

20.
Chem Biol Interact ; 291: 180-189, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940154

RESUMO

Methyl ferulic acid (MFA) is a biologically active monomer extracted and purified from the Chinese herbal medicine Securidaca inappendiculata hasskarl. The previously studies showed that MFA improved acute liver injury induced by ethanol. However, the effect of MFA on ethanol-induced hepatic steatosis in alcoholic liver disease (ALD) still remains unclear. The current study was aimed at elucidating the effect of MFA on alcohol-induced hepatic steatosis and the underlying mechanisms. Human hepatocyte L-02 cells exposed to 200 mM ethanol for 24 h to simulate alcoholic steatosis in vitro. SD rats were fed a Lieber-DeCarli diet containing 5% (w/v) alcohol for 16 weeks to induce alcoholic liver disease in vivo. We examined the effect of MFA on ethanol-induced lipid deposition in L-02 cells and SD rats. The results showed that MFA reduced the accumulation of lipid in L-02 cells, improved alcoholic liver injury in rats, alleviated hepatic pathological lesions, and reduced lipid deposition in rat serum and liver. Further studies suggest that MFA reduces lipid synthesis by activating AMPK-ACC/MAPK-FoxO1 pathway. In addition, MFA also promotes lipid oxidation by up-regulating the expression of SIRT1, PPAR-α, and CPT-1α. Taken together, MFA ameliorates ethanol-induced hepatic steatosis by activating AMPK-ACC/MAPK-FoxO1 pathway and up-regulating the expression levels of SIRT1, PPAR-α, and CPT-1α.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Etanol , Fígado Gorduroso/genética , Humanos , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxirredução , PPAR alfa/genética , PPAR alfa/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA