Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 526(1): 41-47, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32192771

RESUMO

Human breast tumors are not fully autonomous. They are dependent on nutrients and growth-promoting signals provided by the supporting stromal cells. Within the tumor microenvironment, one of the secreted macromolecules by tumor cells is activin A, where we show to downregulate CD36 in fibroblasts. Downregulation of CD36 in fibroblasts also increases the secretion of activin A by fibroblasts. We hypothesize that overexpression of CD36 in fibroblasts inhibits the formation of solid tumors in subtypes of breast cancer models. For the first time, we show that co-culturing organoid models of breast cancer cell lines of MDA-MB-231 (e.g., a triple-negative line) or MCF7 (e.g., a luminal-A line) with CD36+ fibroblasts inhibit the growth and normalizes basal and lateral polarities, respectively. In the long-term anchorage-independent growth assay, the rate of colony formation is also reduced for MDA-MB-231. These observations are consistent with the mechanism of tumor suppression involving the downregulation of pSMAD2/3 and YY1 expression levels. Our integrated analytical methods leverage and extend quantitative assays at cell- and colony-scales in both short- and long-term cultures using brightfield or immunofluorescent microscopy and robust image analysis. Conditioned media are profiled with the ELISA assay.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Antígenos CD36/metabolismo , Fibroblastos/metabolismo , Glândulas Mamárias Humanas/patologia , Ativinas/farmacologia , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Smad/metabolismo , Ensaio Tumoral de Célula-Tronco , Fator de Transcrição YY1/metabolismo
2.
Bioinformatics ; 36(6): 1663-1667, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688895

RESUMO

MOTIVATION: Our previous study has shown that ERBB2 is overexpressed in the organoid model of MCF10A when the stiffness of the microenvironment is increased to that of high mammographic density (MD). We now aim to identify key transcription factors (TFs) and functional enhancers that regulate processes associated with increased stiffness of the microenvironment in the organoid models of premalignant human mammary cell lines. RESULTS: 3D colony organizations and the cis-regulatory networks of two human mammary epithelial cell lines (184A1 and MCF10A) are investigated as a function of the increased stiffness of the microenvironment within the range of MD. The 3D colonies are imaged using confocal microscopy, and the morphometries of colony organizations and heterogeneity are quantified as a function of the stiffness of the microenvironment using BioSig3D. In a surrogate assay, colony organizations are profiled by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed morphometric indices. Next, a subset of enriched data are processed against publicly available ChIP-Seq data using Model-based Analysis of Regulation of Gene Expression to predict regulatory transcription factors. This integrative analysis of morphometric and transcriptomic data predicted YY1 as one of the cis-regulators in both cell lines as a result of the increased stiffness of the microenvironment. Subsequent experiments validated that YY1 is expressed at protein and mRNA levels for MCF10A and 184A1, respectively. Also, there is a causal relationship between activation of YY1 and ERBB2 when YY1 is overexpressed at the protein level in MCF10A. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Densidade da Mama , Organoides , Fator de Transcrição YY1 , Linhagem Celular , Biologia Computacional , Humanos , Fatores de Transcrição
3.
J Hazard Mater ; 314: 140-154, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27131454

RESUMO

Despite numerous reports implicating nitric oxide (NO) in the environmental-stress responses of plants, the specific metabolic and ionic mechanisms of NO-mediated adaptation to metal stress remain unclear. Here, the impacts of copper (Cu) and NO donor (SNP, 50µM) alone or in combination on the well-known medicinal plant Catharanthus roseus L. were investigated. Our results showed that Cu markedly increased Cu(2+) accumulation, decreased NO production, and disrupted mineral equilibrium and proton pumps, thereby stimulating a burst of ROS; in addition, SNP ameliorates the negative toxicity of Cu, and cPTIO reverses this action. Furthermore, the accumulations of ROS and NO resulted in reciprocal changes. Interestingly, nearly all of the investigated amino acids and the total phenolic content in the roots were promoted by the SNP treatment but were depleted by the Cu+SNP treatment, which is consistent with the self-evident increases in phenylalanine ammonia-lyase activity and total soluble phenol content induced by SNP. Unexpectedly, leaf vincristine and vinblastine as well as the total alkaloid content (ca. 1.5-fold) were decreased by Cu but markedly increased by SNP (+38% and +49% of the control levels). This study provides the first evidence of the beneficial behavior of NO, rather than other compounds, in depleting Cu toxicity by regulating mineral absorption, reestablishing ATPase activities, and stimulating secondary metabolites.


Assuntos
Catharanthus/metabolismo , Cobre/farmacologia , Óxido Nítrico/metabolismo , Plantas Medicinais/metabolismo , Catharanthus/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Raízes de Plantas/metabolismo , Plantas Medicinais/efeitos dos fármacos
4.
J Nanomed Nanotechnol ; 7(1)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27175310

RESUMO

The success of bone tissue engineering strategies critically depends on the rapid formation of a mature vascular network in the scaffolds after implantation. Conventional methods to accelerate the infiltration of host vasculature into the scaffolds need to consider the role of host response in regulation of bone tissue ingrowth and extent of vascularization. The long term goal of this study was to harness the potential of inflammatory response to enhance angiogenesis and bone formation in three dimensional (3D) scaffolds. Towards this goal, we explored the use of resveratrol, a natural compound commonly used in complementary medicine, to enable the concurrently (i) mediate M1 to M2 macrophage plasticity, (ii) impart natural release of angiogenic factors by macrophages and (iii) enhance osteogenic differentiation of human mesenchymal stem cells (hMSCs). We mapped the time-dependent response of macrophage gene expression as well as hMSC osteogenic differentiation to varying doses of resveratrol. The utility of this approach was evaluated in 3D poly (lactide-co-glycolide) (PLGA) sintered microsphere scaffolds for bone tissue engineering applications. Our results altogether delineate the potential to synergistically accelerate angiogenic factor release and upregulate osteogenic signaling pathways by "dialing" the appropriate degree of resveratrol release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA