Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Headache Pain ; 23(1): 119, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088305

RESUMO

BACKGROUND: The thalamus plays a crucial role in transmitting nociceptive information to various cortical regions involving migraine-related allodynia and photophobia. Abnormal structural and functional alterations related to the thalamus have been well established. However, it is unknown whether the brain structure and function of the thalamic subregions are differentially affected in this disorder. In this study, we aimed to clarify this issue by comparing the structure and function of 16 thalamic subregions between patients with episodic migraine (EM) and healthy controls (HCs). METHODS: Twenty-seven patients with EM and 30 sex-, age- and education-matched HCs underwent resting-state functional and structural magnetic resonance imaging scans. Functional connectivity (rsFC), grey matter volume (GMV), and diffusion tensor imaging (DTI) parameters of each subregion of the thalamus were calculated and compared between the two groups. Furthermore, correlation analyses between neuroimaging changes and clinical features were performed in this study. RESULTS: First, compared with HCs, patients with EM exhibited decreased rsFC between the anterior-medial-posterior subregions of the thalamus and brain regions mainly involved in the medial system of the pain processing pathway and default mode network (DMN). Second, for the whole thalamus and each of its subregions, there were no significant differences in GMV between patients with EM and HCs (P > 0.05, Bonferroni corrected). Third, there was no significant difference in DTI parameters between the two groups (P > 0.05). Finally, decreased rsFC was closely related to scores on the Hamilton Rating Scale for Anxiety (HAMA) and Big Five Inventory (BFI) scales. CONCLUSION: Selective functional hypoconnectivity in the thalamic subregions provides neuroimaging evidence supporting the important role of thalamocortical pathway dysfunction in episodic migraine, specifically, that it may modulate emotion and different personality traits in migraine patients.


Assuntos
Imagem de Tensor de Difusão , Transtornos de Enxaqueca , Encéfalo , Humanos , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-36016679

RESUMO

Tartary buckwheat flavonoids (TBFs) exhibit diverse biological activities, with antioxidant, antidiabetes, anti-inflammatory, and cholesterol-lowering properties. In this study, we investigated the role of TBFs in attenuating glucose and lipid disturbances in diabetic mice and hence preventing the occurrence of diabetes-related colon lesions in mice by regulating the gut microbiota. The results showed that TBFs (1) reversed blood glucose levels and body weight changes; (2) improved levels of serum total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and fasting insulin; and (3) significantly reduced diabetes-related colon lesions in diabetic mice. In addition, TBFs also affected the diabetes-related imbalance of the gut microbiota and enriched beneficial microbiota, including Akkermansia and Prevotella. The TBF also selectively increased short-chain fatty acid-producing bacteria, including Roseburia and Odoribacter, and decreased the abundance of the diabetes-related gut microbiota, including Escherichia, Mucispirillum, and Bilophila. The correlation analysis indicated that TBFs improved metabolic parameters related to key communities of the gut microbiota. Our data suggested that TBFs alleviated glucose and lipid disturbances and improved colon lesions in diabetic mice, possibly by regulating the community composition of the gut microbiota. This regulation of the gut microbiota composition may explain the observed effects of TBFs to alleviate diabetes-related symptoms.

3.
Open Life Sci ; 16(1): 1022-1036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616915

RESUMO

Mevalonate pyrophosphate decarboxylase (MPD) is a key enzyme in terpenoid biosynthesis. MPD plays an important role in the upstream regulation of secondary plant metabolism. However, studies on the MPD gene are relatively very few despite its importance in plant metabolism. Currently, no systematic analysis has been conducted on the MPD gene in plants under the order Apiales, which comprises important medicinal plants such as Panax ginseng and Panax notoginseng. This study sought to explore the structural characteristics of the MPD gene and the effect of adaptive evolution on the gene by comparing and analyzing MPD gene sequences of different campanulids species. For that, phylogenetic and adaptive evolution analyses were carried out using sequences for 11 Campanulids species. MPD sequence characteristics of each species were then analyzed, and the collinearity analysis of the genes was performed. As a result, a total of 21 MPD proteins were identified in 11 Campanulids species through BLAST analysis. Phylogenetic analysis, physical and chemical properties prediction, gene family analysis, and gene structure prediction showed that the MPD gene has undergone purifying selection and exhibited highly conserved structure. Analysis of physicochemical properties further showed that the MPD protein was a hydrophilic protein without a transmembrane region. Moreover, collinearity analysis in Apiales showed that MPD gene on chromosome 2 of D. carota and chromosome 1 of C. sativum were collinear. The findings showed that MPD gene is highly conserved. This may be a common characteristic of all essential enzymes in the biosynthesis pathways of medicinal plants. Notably, MPD gene is significantly affected by environmental factors which subsequently modulate its expression. The current study's findings provide a basis for follow-up studies on MPD gene and key enzymes in other medicinal plants.

4.
Nat Commun ; 12(1): 5175, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462445

RESUMO

Calcitonin receptor (Calcr)-expressing neurons of the nucleus tractus solitarius (NTS; CalcrNTS cells) contribute to the long-term control of food intake and body weight. Here, we show that Prlh-expressing NTS (PrlhNTS) neurons represent a subset of CalcrNTS cells and that Prlh expression in these cells restrains body weight gain in the face of high fat diet challenge in mice. To understand the relationship of PrlhNTS cells to hypothalamic feeding circuits, we determined the ability of PrlhNTS-mediated signals to overcome enforced activation of AgRP neurons. We found that PrlhNTS neuron activation and Prlh overexpression in PrlhNTS cells abrogates AgRP neuron-driven hyperphagia and ameliorates the obesity of mice deficient in melanocortin signaling or leptin. Thus, enhancing Prlh-mediated neurotransmission from the NTS dampens hypothalamically-driven hyperphagia and obesity, demonstrating that NTS-mediated signals can override the effects of orexigenic hypothalamic signals on long-term energy balance.


Assuntos
Obesidade/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Núcleo Solitário/metabolismo , Animais , Apetite , Dieta , Ingestão de Alimentos , Metabolismo Energético , Feminino , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hormônio Liberador de Prolactina/genética , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo
5.
Nutrients ; 11(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759836

RESUMO

We applied Mendelian randomization analyses to investigate the potential causality between blood minerals (calcium, magnesium, iron, copper, and zinc) and osteoporosis (OP), gout, rheumatoid arthritis (RA), type 2 diabetes (T2D), Alzheimer's disease (AD), bipolar disorder (BD), schizophrenia , Parkinson's disease and major depressive disorder. Single nucleotide polymorphisms (SNPs) that are independent (r² < 0.01) and are strongly related to minerals (p < 5 × 10-8) are selected as instrumental variables. Each standard deviation increase in magnesium (0.16 mmol/L) is associated with an 8.94-fold increase in the risk of RA (p = 0.044) and an 8.78-fold increase in BD (p = 0.040) but a 0.10 g/cm² increase in bone density related to OP (p = 0.014). Each per-unit increase in copper is associated with a 0.87-fold increase in the risk of AD (p = 0.050) and BD (p = 0.010). In addition, there is suggestive evidence that calcium is positively correlated (OR = 1.36, p = 0.030) and iron is negatively correlated with T2D risk (OR = 0.89, p = 0.010); both magnesium (OR = 0.26, p = 0.013) and iron (OR = 0.71, p = 0.047) are negatively correlated with gout risk. In the sensitivity analysis, causal estimation is not affected by pleiotropy. This study supports the long-standing hypothesis that magnesium supplementation can increase RA and BD risks and decrease OP risk and that copper intake can reduce AD and BD risks. This study will be helpful to address some controversial debates on the relationships between minerals and chronic diseases.


Assuntos
Minerais/sangue , Estado Nutricional , Doença de Alzheimer/sangue , Artrite Reumatoide/sangue , Transtorno Depressivo Maior/sangue , Diabetes Mellitus Tipo 2/sangue , Gota/sangue , Humanos , Análise da Randomização Mendeliana , Doença de Parkinson/sangue , Fatores de Risco , Esquizofrenia/sangue
6.
Diabetes ; 67(6): 1093-1104, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29535089

RESUMO

Leptin acts via its receptor (LepRb) to modulate gene expression in hypothalamic LepRb-expressing neurons, thereby controlling energy balance and glucose homeostasis. Despite the importance of the control of gene expression in hypothalamic LepRb neurons for leptin action, the transcriptional targets of LepRb signaling have remained undefined because LepRb cells contribute a small fraction to the aggregate transcriptome of the brain regions in which they reside. We thus employed translating ribosome affinity purification followed by RNA sequencing to isolate and analyze mRNA from the hypothalamic LepRb neurons of wild-type or leptin-deficient (Lepob/ob) mice treated with vehicle or exogenous leptin. Although the expression of most of the genes encoding the neuropeptides commonly considered to represent the main targets of leptin action were altered only following chronic leptin deprivation, our analysis revealed other transcripts that were coordinately regulated by leptin under multiple treatment conditions. Among these, acute leptin treatment increased expression of the transcription factor Atf3 in LepRb neurons. Furthermore, ablation of Atf3 from LepRb neurons (Atf3LepRbKO mice) decreased leptin efficacy and promoted positive energy balance in mice. Thus, this analysis revealed the gene targets of leptin action, including Atf3, which represents a cellular mediator of leptin action.


Assuntos
Fator 3 Ativador da Transcrição/agonistas , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Receptores para Leptina/agonistas , Transdução de Sinais , Fator 3 Ativador da Transcrição/química , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Cruzamentos Genéticos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Leptina/análogos & derivados , Leptina/farmacologia , Leptina/uso terapêutico , Lipotrópicos/farmacologia , Lipotrópicos/uso terapêutico , Masculino , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA