Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 243: 125229, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301339

RESUMO

The objective of this study was to simultaneously extract passion fruit (Passiflora edulis) peel pectins and phenolics using deep eutectic solvents, to evaluate their physicochemical properties and antioxidant activity. By taking L-proline: citric acid (Pro-CA) as the optimal solvent, the effect of extraction parameters on the yields of extracted passion fruit peel pectins (PFPP) and total phenolic content (TPC) was explored by response surfaces methodology (RSM). A maximum pectin yield (22.63%) and the highest TPC (9.68 mg GAE/g DW) were attained under 90 °C, extraction solvent pH = 2, extraction time of 120 min and L/S ratio of 20 mL/g. In addition, Pro-CA-extracted pectins (Pro-CA-PFPP) and HCl-extracted pectins (HCl-PFPP) were subjected to high performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), thermogram analysis (TG/DTG) and rheological measurements. Results verified that the Mw and thermal stability of Pro-CA-PFPP were higher than those of HCl-PFPP. The PFPP solutions featured a non-Newtonian behavior, and compared with commercially pectin solution, PFPP solution exhibited a stronger antioxidant activity. Additionally, passion fruit peel extract (PFPE) exhibited stronger antioxidant effects than PFPP. The results of ultra-performance liquid chromatography hybrid triple quadrupole-linear ion trap mass spectrometry (UPLC-Qtrap-MS) and high performance liquid chromatography (HPLC) analysis showed that (-)-epigallocatechin, gallic acid, epicatechin, kaempferol-3-O-rutin and myricetin were the main phenolic compounds in PFPE and PFPP. Our results suggest that Pro-CA can be considered as an eco-friendly solvent for high-efficient extraction of high-value compounds from agricultural by-products.


Assuntos
Passiflora , Pectinas , Pectinas/química , Antioxidantes/química , Passiflora/química , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenóis/análise , Solventes/química
2.
Gene ; 763S: 100033, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34493368

RESUMO

Dehydrins (DHNs) play critical roles in plant adaptation to abiotic stresses. The objective of this study was to characterize DHNs in bermudagrass (Cynodon spp.). CdDHN4 gene was cloned from bermudagrass 'Tifway'. Two CdDHN4 transcripts were detected due to alternative splicing (the nonspliced CdDHN4-L and the spliced CdDHN4-S) and both the CdDHN4-S and CdDHN4-L proteins are YSK2-type DHNs, the Φ-segment is present in CdDHN4-L and absent in CdDHN4-S. Transgenic Arabidopsis thaliana expressing CdDHN4-L or CdDHN4-S exhibited improved tolerance to salt, osmotic, low temperature and drought stress compared to the wild type (WT). The two transgenic lines did not differ in salt or drought tolerance, while plants expressing CdDHN4-S grew better under osmotic stress than those expressing CdDHN4-L. Both transgenic lines exhibited reduced content of malondialdehyde (MDA) and reactive oxygen species (ROS); and higher antioxidant enzymatic activities than the wild type plants under salt or drought stress. CdDHN4-S exhibited a higher ROS-scavenging capacity than CdDHN4-L.


Assuntos
Processamento Alternativo/genética , Cynodon/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Adaptação Fisiológica , Arabidopsis/genética , Temperatura Baixa/efeitos adversos , Cynodon/crescimento & desenvolvimento , Secas , Regulação da Expressão Gênica de Plantas/genética , Pressão Osmótica/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo
3.
Biomed Chromatogr ; 28(9): 1183-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25237706

RESUMO

In this study, a reliable method for analysis and identification of eight terpenoids in tissue cultures of Tripterygium wilfordii has been established using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS). Our study indicated that sterile seedlings, callus cultures and cell-suspension cultures can rapidly increase the amount of biological materials. HPLC-ESI-MS was used to identify terpenoids from the extracts of these tissue cultures. Triptolide, triptophenolide, celastrol and wilforlide A were unambiguously determined by comparing the retention times, UV spectral data, and mass fragmentation behaviors with those of the reference compounds. Another four compounds were tentatively identified as triptonoterpenol, triptonoterpene, 22ß-hydroxy-3-oxoolean-12-en-29-oic acid and wilforlide B, based on their UV and mass spectrometry spectra. The quantitative analysis showed that all three materials contain triptolide, triptophenolide, celastrol, wilforlide A, and the contents of the four compounds in the cell-suspension cultures were 53.1, 240, 129 and 964 µg/g, respectively, which were at least 2.0-fold higher than these in the sterile seedlings and callus cultures. Considering the known pharmacological activity of triptolide and celastrol, we recommend the cell-suspension cultures as biological materials for future studies, such as clinical and toxicological studies. The developed method was validated by the evaluation of its precision, linearity, detection limits and recovery, and it was successfully used to identify and quantify the terpenoids in the tissue cultures.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Terpenos/análise , Terpenos/química , Tripterygium/química , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA