Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5152-5161, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114105

RESUMO

During the storage process, Chinese medicinal materials are susceptible to insect infestation due to their own nature and external storage factors. Infestation by insects can have varying impacts on the materials. In mild cases, it affects the appearance and reduces consumer purchasing power, while in severe cases, it affects the quality, reduces medicinal value, and introduces impurities such as insect bodies, excrement, and secretions, resulting in significant contamination of the medicinal materials. This study reviewed the rele-vant factors influencing insect infestation in Chinese medicinal materials and the compositional changes that occur after infestation and summarized maintenance measures for preventing insect infestation. Additionally, it provided an overview of detection techniques applicable to identifying insect infestation during the storage of Chinese medicinal materials. During the storage process, insect infestation is the result of the combined effects of biological factors(source, species, and population density of insects), intrinsic factors(moisture, chemical composition, and metabolism), and environmental factors(temperature, relative humidity, and oxygen content). After infestation, there are significant changes in the content of constituents in the medicinal materials. By implementing strict pre-storage inspections, regular maintenance after storage, and appropriate storage and maintenance methods, the occurrence of insect infestation can be reduced, and the preservation rate of Chinese medicinal materials can be improved. The storage and maintenance of Chinese medicinal materials are critical for ensuring their quality. Through scientifically standardized storage and strict adherence to operational management standards, the risk of insect infestation can be minimized, thus guaranteeing the quality of Chinese medicinal materials.


Assuntos
Contaminação de Medicamentos , Insetos , Animais , Contaminação de Medicamentos/prevenção & controle , Preservação Biológica , Temperatura
2.
Phytomedicine ; 118: 154943, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421765

RESUMO

BACKGROUND: Shikonin, a natural naphthoquinone compound, has a wide range of pharmacological effects, but its anti-tumor effect and underlying mechanisms in bladder cancer remain unclear. PURPOSE: We aimed to investigate the role of shikonin in bladder cancer in vitro and in vivo in order to broaden the scope of shikonin's clinical application. STUDY DESIGN AND METHODS: We performed MTT and colony formation to detect the inhibiting effect of shikonin on bladder cancer cells. ROS staining and flow cytometry assays were performed to detect the accumulation of ROS. Western blotting, siRNA and immunoprecipitation were used to evaluate the effect of necroptosis in bladder cancer cells. Transmission electron microscopy and immunofluorescence were used to examine the effect of autophagy. Nucleoplasmic separation and other pharmacological experimental methods described were used to explore the Nrf2 signal pathway and the crosstalk with necroptosis and autophagy. We established a subcutaneously implanted tumor model and performed immunohistochemistry assays to study the effects and the underlying mechanisms of shikonin on bladder cancer cells in vivo. RESULTS: The results showed that shikonin has a selective inhibitory effect on bladder cancer cells and has no toxicity on normal bladder epithelial cells. Mechanically, shikonin induced necroptosis and impaired autophagic flux via ROS generation. The accumulation of autophagic biomarker p62 elevated p62/Keap1 complex and activated the Nrf2 signaling pathway to fight against ROS. Furthermore, crosstalk between necroptosis and autophagy was present, we found that RIP3 may be involved in autophagosomes and be degraded by autolysosomes. We found for the first time that shikonin-induced activation of RIP3 may disturb the autophagic flux, and inhibiting RIP3 and necroptosis could accelerate the conversion of autophagosome to autolysosome and further activate autophagy. Therefore, on the basis of RIP3/p62/Keap1 complex regulatory system, we further combined shikonin with late autophagy inhibitor(chloroquine) to treat bladder cancer and achieved a better inhibitory effect. CONCLUSION: In conclusion, shikonin could induce necroptosis and impaired autophagic flux through RIP3/p62/Keap1 complex regulatory system, necroptosis could inhibit the process of autophagy via RIP3. Combining shikonin with late autophagy inhibitor could further activate necroptosis via disturbing RIP3 degradation in bladder cancer in vitro and in vivo.


Assuntos
Naftoquinonas , Neoplasias da Bexiga Urinária , Humanos , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Morte Celular , Naftoquinonas/farmacologia , Autofagia , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
Res Vet Sci ; 161: 138-144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37384972

RESUMO

Aluminum is widely used in daily life due to its excellent properties. However, aluminum exposure to the environment severely threatens animal and human health. Conversely, selenium (Se) contributes to maintaining the balance of the immune system. Neutrophils exert immune actions in several ways, including neutrophil extracellular traps (NETs) that localize and capture exogenous substances. Despite the recent investigations on the toxic effects of aluminum and its molecular mechanisms, the immunotoxicity of aluminum nanoparticles on pigs and the antagonistic effect of selenium on aluminum toxicity are poorly understood. Here, we treated porcine peripheral blood neutrophils with zymosan for 3 h to induce NETs formation. Then, we investigated the effect of nanoaluminum on NETs formation in pigs and its possible molecular mechanisms. Microscopy observations revealed that NETs formation was inhibited by nanoaluminum. Using a multifunctional microplate reader, the production of extracellular DNA and the burst of reactive oxygen species (ROS) in porcine neutrophils were inhibited by nanoaluminum. Western blot analyses showed that nanoaluminum caused changes in amounts of cellular selenoproteins. After Se supplementation, the production of porcine NETs, the burst of ROS, and selenoprotein levels were restored. This study indicated that nanoaluminum inhibited the zymosan-induced burst of ROS and release of NETs from porcine neutrophils, possibly through the selenoprotein signaling pathway. In contrast, Se supplementation reduced the toxic effects of nanoaluminum and restored NETs formation.


Assuntos
Armadilhas Extracelulares , Selênio , Humanos , Animais , Suínos , Armadilhas Extracelulares/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Saccharomyces cerevisiae , Espécies Reativas de Oxigênio/metabolismo , Zimosan/toxicidade , Zimosan/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Neutrófilos/metabolismo
4.
Comput Math Methods Med ; 2022: 9455428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35027944

RESUMO

OBJECTIVE: To investigate the effect of neuromuscular electrical stimulation (NMES) combined with repetitive transcranial magnetic stimulation (rTMS) on upper limb motor dysfunction in stroke patients with hemiplegia. METHODS: A total of 240 stroke patients with hemiplegia who met the inclusion criteria were selected and randomly divided into 4 groups (60 cases in each group): control group, NMES group, rTMS group, and NMES + rTMS group. Before treatment and 4 weeks after treatment, we evaluated and compared the results including Fugl-Meyer assessment of upper extremity (FMA-UE) motor function, modified Barthel index (MBI), modified Ashworth scale (MAS), and motor nerve electrophysiological results among the 4 groups. RESULTS: Before treatment, there was no significant difference in the scores of FMA-UE, MBI, MAS, and motor nerve electrophysiological indexes among the four groups, with comparability. Compared with those before treatment, the scores of the four groups were significantly increased and improved after treatment. And the score of the NMES + rTMS group was notably higher than those in the other three groups. CONCLUSION: NMES combined with rTMS can conspicuously improve the upper extremity motor function and activities of daily life of stroke patients with hemiplegia, which is worthy of clinical application and promotion.


Assuntos
Terapia por Estimulação Elétrica/métodos , Hemiplegia/etiologia , Hemiplegia/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos , Idoso , Biologia Computacional , Feminino , Hemiplegia/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Destreza Motora/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/estatística & dados numéricos , Resultado do Tratamento , Extremidade Superior/fisiopatologia
5.
ACS Appl Mater Interfaces ; 13(32): 38090-38104, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342219

RESUMO

Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 µM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/terapia , Terapia Fototérmica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
6.
Phytomedicine ; 91: 153721, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34461423

RESUMO

BACKGROUND: The bark and petal of Hibiscus syriacus L. (Malvaceae) have been used to relieve pain in traditional Korean medicine. Recently, we identified anthocyanin-enriched polyphenols from the petal of H. syriacus L. (AHs) and determined its anti-melanogenic, anti-inflammatory, and anti-oxidative properties. Nevertheless, the osteogenic potential of AHs remains unknown. PURPOSE: This study was aimed to investigating the effect of AHs on osteoblast differentiation and osteogenesis in osteoblastic cell lines and zebrafish larvae. Furthermore, we investigated whether AHs ameliorates prednisolone (PDS)-induced osteoporosis. STUDY DESIGN AND METHODS: Cell viability was assessed by cellular morphology, MTT assay, and flow cytometry analysis, and osteoblast differentiation was measured alizarin red staining, alkaline phosphatase (ALP) activity, and osteoblast-specific marker expression. Osteogenic and anti-osteoporotic effects of AHs were determined in zebrafish larvae. RESULTS: AHs enhanced calcification and ALP activity concomitant with the increased expression of osterix (OSX), runt-related transcription factor 2 (RUNX2), and ALP in MC3T3-E1 preosteoblast and MG-63 osteosarcoma cells. Additionally, AHs accelerated vertebral formation and mineralization in zebrafish larvae, concurrent with the increased expression of OSX, RUNX2a, and ALP. Furthermore, PDS-induced loss of osteogenic activity and vertebral formation were restored by treatment with AHs, accompanied by a significant recovery of calcification, ALP activity, and osteogenic marker expression. Molecular docking studies showed that 16 components in AHs fit to glucagon synthase kinase-3ß (GSK-3ß); particularly, isovitexin-4'-O-glucoside most strongly binds to the peptide backbone of GSK-3ß at GLY47(O), GLY47(N), and ASN361(O), with a binding score of -7.3. Subsequently, AHs phosphorylated GSK-3ß at SER9 (an inactive form) and released ß-catenin into the nucleus. Pretreatment with FH535, a Wnt/ß-catenin inhibitor, significantly inhibited AH-induced vertebral formation in zebrafish larvae. CONCLUSION: AHs stimulate osteogenic activities through the inhibition of GSK-3ß and subsequent activation of ß-catenin, leading to anti-osteoporosis effects.


Assuntos
Antocianinas , Hibiscus , Osteogênese/efeitos dos fármacos , Osteoporose , Polifenóis , Animais , Antocianinas/farmacologia , Glicogênio Sintase Quinase 3 beta , Hibiscus/química , Simulação de Acoplamento Molecular , Osteoblastos/metabolismo , Osteoporose/tratamento farmacológico , Polifenóis/farmacologia , Via de Sinalização Wnt , Peixe-Zebra/metabolismo , beta Catenina/metabolismo
7.
Int J Med Sci ; 18(12): 2480-2492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104079

RESUMO

Background: Trans-cinnamaldehyde (tCA), a bioactive component found in Cinnamomum cassia, has been reported to exhibit anti-inflammatory and antioxidant effects, but its efficacy in muscle cells has yet to be found. In this study, we investigated the inhibitory effect of tCA on inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in C2C12 mouse skeletal myoblasts. Methods: To investigate the anti-inflammatory and antioxidant effects of tCA in LPS-treated C2C12 cells, we measured the levels of pro-inflammatory mediator, cytokines, and reactive oxygen species (ROS). To elucidate the mechanism underlying the effect of tCA, the expression of genes involved in the expression of inflammatory and oxidative regulators was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of tCA against LPS in the zebrafish model. Results: tCA significantly inhibited the LPS-induced release of pro-inflammatory mediators and cytokines, which was associated with decreased expression of their regulatory genes. tCA also suppressed the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor, and attenuated the nuclear translocation of nuclear factor-kappa B (NF-κB) and the binding of LPS to TLR4 on the cell surface in LPS-treated C2C12 cells. Furthermore, tCA abolished LPS-induced generation of ROS and expression levels of ROS producing enzymes, NADPH oxidase 1 (NOX1) and NOX2. However, tCA enhanced the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated C2C12 myoblasts. In addition, tCA showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. Conclusions: Our findings suggest that tCA exerts its inhibitory ability against LPS-induced inflammatory and antioxidant stress in C2C12 myoblasts by targeting the TLR4/NF-κB, which might be mediated by the NOXs and Nrf2/HO-1 pathways.


Assuntos
Acroleína/análogos & derivados , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Mioblastos , NF-kappa B/metabolismo , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Peixe-Zebra
8.
Molecules ; 26(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804230

RESUMO

The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Lycium/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Vias Biossintéticas/fisiologia , Fitoterapia/métodos , Biologia Sintética/métodos
9.
Neurosci Bull ; 37(2): 229-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33180308

RESUMO

The paraventricular nucleus of the thalamus (PVT), which serves as a hub, receives dense projections from the medial prefrontal cortex (mPFC) and projects to the lateral division of central amygdala (CeL). The infralimbic (IL) cortex plays a crucial role in encoding and recalling fear extinction memory. Here, we found that neurons in the PVT and IL were strongly activated during fear extinction retrieval. Silencing PVT neurons inhibited extinction retrieval at recent time point (24 h after extinction), while activating them promoted extinction retrieval at remote time point (7 d after extinction), suggesting a critical role of the PVT in extinction retrieval. In the mPFC-PVT circuit, projections from IL rather than prelimbic cortex to the PVT were dominant, and disrupting the IL-PVT projection suppressed extinction retrieval. Moreover, the axons of PVT neurons preferentially projected to the CeL. Silencing the PVT-CeL circuit also suppressed extinction retrieval. Together, our findings reveal a new neural circuit for fear extinction retrieval outside the classical IL-amygdala circuit.


Assuntos
Núcleo Central da Amígdala , Medo , Extinção Psicológica , Córtex Pré-Frontal , Tálamo
10.
Front Bioeng Biotechnol ; 8: 588255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330420

RESUMO

Glycyrrhetinic acid (GA) is one of the main bioactive components of licorice, and it is widely used in traditional Chinese medicine due to its hepatoprotective, immunomodulatory, anti-inflammatory and anti-viral functions. Currently, GA is mainly extracted from the roots of cultivated licorice. However, licorice only contains low amounts of GA, and the amount of licorice that can be planted is limited. GA supplies are therefore limited and cannot meet the demands of growing markets. GA has a complex chemical structure, and its chemical synthesis is difficult, therefore, new strategies to produce large amounts of GA are needed. The development of metabolic engineering and emerging synthetic biology provide the opportunity to produce GA using microbial cell factories. In this review, current advances in the metabolic engineering of Saccharomyces cerevisiae for GA biosynthesis and various metabolic engineering strategies that can improve GA production are summarized. Furthermore, the advances and challenges of yeast GA production are also discussed. In summary, GA biosynthesis using metabolically engineered S. cerevisiae serves as one possible strategy for sustainable GA supply and reasonable use of traditional Chinese medical plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA