Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 20(1): 17, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910804

RESUMO

BACKGROUND: Recurrence of drug-resistant tuberculosis (DR-TB) after treatment occurs through relapse of the initial infection or reinfection by a new drug-resistant strain. Outbreaks of DR-TB in high burden regions present unique challenges in determining recurrence status for effective disease management and treatment. In the Republic of Moldova the burden of DR-TB is exceptionally high, with many cases presenting as recurrent. METHODS: We performed a retrospective analysis of Mycobacterium tuberculosis from Moldova to better understand the genomic basis of drug resistance and its effect on the determination of recurrence status in a high DR-burden environment. To do this we analyzed genomes from 278 isolates collected from 189 patients, including 87 patients with longitudinal samples. These pathogen genomes were sequenced using Illumina technology, and SNP panels were generated for each sample for use in phylogenetic and network analysis. Discordance between genomic resistance profiles and clinical drug-resistance test results was examined in detail to assess the possibility of mixed infection. RESULTS: There were clusters of multiple patients with 10 or fewer differences among DR-TB samples, which is evidence of person-to-person transmission of DR-TB. Analysis of longitudinally collected isolates revealed that many infections exhibited little change over time, though 35 patients demonstrated reinfection by divergent (number of differences > 10) lineages. Additionally, several same-lineage sample pairs were found to be more divergent than expected for a relapsed infection. Network analysis of the H3/4.2.1 clade found very close relationships among 61 of these samples, making differentiation of reactivation and reinfection difficult. There was discordance between genomic profile and clinical drug sensitivity test results in twelve samples, and four of these had low level (but not statistically significant) variation at DR SNPs suggesting low-level mixed infections. CONCLUSIONS: Whole-genome sequencing provided a detailed view of the genealogical structure of the DR-TB epidemic in Moldova, showing that reinfection may be more prevalent than currently recognized. We also found increased evidence of mixed infection, which could be more robustly characterized with deeper levels of genomic sequencing.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Antituberculosos/efeitos adversos , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Moldávia , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Recidiva , Estudos Retrospectivos , Adulto Jovem
2.
Lancet ; 394(10202): 953-966, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31526739

RESUMO

Drug-resistant tuberculosis is a major public health concern in many countries. Over the past decade, the number of patients infected with Mycobacterium tuberculosis resistant to the most effective drugs against tuberculosis (ie, rifampicin and isoniazid), which is called multidrug-resistant tuberculosis, has continued to increase. Globally, 4·6% of patients with tuberculosis have multidrug-resistant tuberculosis, but in some areas, like Kazakhstan, Kyrgyzstan, Moldova, and Ukraine, this proportion exceeds 25%. Treatment for patients with multidrug-resistant tuberculosis is prolonged (ie, 9-24 months) and patients with multidrug-resistant tuberculosis have less favourable outcomes than those treated for drug-susceptible tuberculosis. Individualised multidrug-resistant tuberculosis treatment with novel (eg, bedaquiline) and repurposed (eg, linezolid, clofazimine, or meropenem) drugs and guided by genotypic and phenotypic drug susceptibility testing can improve treatment outcomes. Some clinical trials are evaluating 6-month regimens to simplify management and improve outcomes of patients with multidrug-resistant tuberculosis. Here we review optimal diagnostic and treatment strategies for patients with drug-resistant tuberculosis and their contacts.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/administração & dosagem , Esquema de Medicação , Farmacorresistência Bacteriana Múltipla/genética , Saúde Global , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
3.
Respirology ; 23(7): 656-673, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29641838

RESUMO

The emergence of antimicrobial resistance against Mycobacterium tuberculosis, the leading cause of mortality due to a single microbial pathogen worldwide, represents a growing threat to public health and economic growth. The global burden of multidrug-resistant tuberculosis (MDR-TB) has recently increased by an annual rate of more than 20%. According to the World Health Organization approximately only half of all patients treated for MDR-TB achieved a successful outcome. For many years, patients with drug-resistant tuberculosis (TB) have received standardized treatment regimens, thereby accelerating the development of MDR-TB through drug-specific resistance amplification. Comprehensive drug susceptibility testing (phenotypic and/or genotypic) is necessary to inform physicians about the best drugs to treat individual patients with tailor-made treatment regimens. Phenotypic drug resistance can now often, but with variable sensitivity, be predicted by molecular drug susceptibility testing based on whole genome sequencing, which in the future could become an affordable method for the guidance of treatment decisions, especially in high-burden/resource-limited settings. More recently, MDR-TB treatment outcomes have dramatically improved with the use of bedaquiline-based regimens. Ongoing clinical trials with novel and repurposed drugs will potentially further improve cure-rates, and may substantially decrease the duration of MDR-TB treatment necessary to achieve relapse-free cure.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Diarilquinolinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Saúde Global , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA