Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 900: 174038, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737008

RESUMO

Subarachnoid hemorrhage (SAH) due to rupture of an intracranial aneurysm leads to vasospasm resulting in delayed cerebral ischemia. Therapeutic options are currently limited to hemodynamic optimization and nimodipine, which have marginal clinical efficacy. Nitric oxide (NO) modulates cerebral blood flow through activation of the cGMP-Protein Kinase G (PKG) pathway. Our hypothesis is that SAH results in downregulation of signaling components in the NO-PKG pathway which could explain why treatments for vasospasm targeting this pathway lack efficacy and that treatment with a cell permeant phosphopeptide mimetic of downstream effector prevents delayed vasospasm after SAH. Using a rat endovascular perforation model, reduced levels of NO-PKG pathway molecules were confirmed. Additionally, it was determined that expression and phosphorylation of a PKG substrate: Vasodilator-stimulated phosphoprotein (VASP) was downregulated. A family of cell permeant phosphomimetic of VASP (VP) was wasdesigned and shown to have vasorelaxing property that is synergistic with nimodipine in intact vascular tissuesex vivo. Hence, treatment targeting the downstream effector of the NO signaling pathway, VASP, may bypass receptors and signaling elements leading to vasorelaxation and that treatment with VP can be explored as a therapeutic strategy for SAH induced vasospasm and ameliorate neurological deficits.


Assuntos
Fosfopeptídeos/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Vasodilatadores/uso terapêutico , Vasoespasmo Intracraniano/tratamento farmacológico , Animais , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Regulação para Baixo , Desenho de Fármacos , Sinergismo Farmacológico , Proteínas dos Microfilamentos/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Mimetismo Molecular , Nimodipina/farmacologia , Óxido Nítrico/metabolismo , Fosfopeptídeos/farmacocinética , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/metabolismo , Suínos , Vasodilatadores/farmacocinética
2.
PLoS One ; 12(11): e0188069, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29136654

RESUMO

A viable vascular endothelial layer prevents vasomotor dysfunction, thrombosis, inflammation, and intimal hyperplasia. Injury to the endothelium occurs during harvest and "back table" preparation of human saphenous vein prior to implantation as an arterial bypass conduit. A subfailure overstretch model of rat aorta was used to show that subfailure stretch injury of vascular tissue leads to impaired endothelial-dependent relaxation. Stretch-induced impaired relaxation was mitigated by treatment with purinergic P2X7 receptor (P2X7R) inhibitors, brilliant blue FCF (FCF) and A740003, or apyrase, an enzyme that catalyzes the hydrolysis of ATP. Alternatively, treatment of rat aorta with exogenous ATP or 2'(3')-O-(4-Benzoyl benzoyl)-ATP (BzATP) also impaired endothelial-dependent relaxation. Treatment of human saphenous vein endothelial cells (HSVEC) with exogenous ATP led to reduced nitric oxide production which was associated with increased phosphorylation of the stress activated protein kinase, p38 MAPK. ATP- stimulated p38 MAPK phosphorylation of HSVEC was inhibited by FCF and SB203580. Moreover, ATP inhibition of nitric oxide production in HSVEC was prevented by FCF, SB203580, L-arginine supplementation and arginase inhibition. Finally, L-arginine supplementation and arginase inhibition restored endothelial dependent relaxation after stretch injury of rat aorta. These results suggest that vascular stretch injury leads to ATP release, activation of P2X7R and p38 MAPK resulting in endothelial dysfunction due to arginase activation. Endothelial function can be restored in both ATP treated HSVEC and intact stretch injured rat aorta by P2X7 receptor inhibition with FCF or L-arginine supplementation, implicating straightforward therapeutic options for treatment of surgical vascular injury.


Assuntos
Endotélio Vascular/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Procedimentos Cirúrgicos Vasculares/métodos , Animais , Endotélio Vascular/fisiopatologia , Feminino , Óxido Nítrico/biossíntese , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA