Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 25: 15-24, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28190466

RESUMO

BACKGROUND: X. sorbifolia is a widely cultivated ecologicalcrop in the north of China which is used to produce biodiesel fuel. It also possesses special medicinal value and has attracted keen interests of researchers to explore its bioactivity. PURPOSE: To extract the total triterpenoid saponins from the husk of X. sorbifolia (TSX) and investigate its effects on Alzheimer's disease (AD). STUDY DESIGN: TSX was prepared via modern extraction techniques. Its effects on two AD animal models, as well as the preliminary mechanism were investigated comprehensively. METHODS: The behavioral experiments including Y maze test, Morris water maze test and passive avoidance test were performed to observe the learning and memory abilities of the animals. ELISA assays, transmission electron microscope observation and Western blotting were employed in mechanism study. RESULTS: TSX, the main composition of X. sorbifolia, accounted for 88.77% in the plant material. It could significantly increase the spontaneous alternation in Y maze test (F (6, 65)=3.209, P<0.01), prolong the swimming time in the fourth quadrant in probe test of Morris water maze test (F (6, 71)=4.019, P<0.01), and increase the escape latency in passive avoidance test (F (6, 65)=3.684, P<0.01) in AD model animals. The preliminary mechanism research revealed that TSX could significantly increase the contents of hippocampal Ach and ChAT, and enhance activity of ChAT in hippocampus of quinolinic acid injected rats (F (5, 61)=3.915, P 0.01; F (5, 61)=3.623, P<0.01, F (5, 61)=4.344, P<0.01, respectively). It could also increase the activities of T-AOC and T-SOD, and decrease the content of MDA in hippocampus of Aß1-42 injected mice (F (5, 30)=5.193, P<0.01, F (5, 30)=2.865, P<0.05, F (5, 30)=4.735, P<0.01, respectively). Moreover, it significantly increased the expressions of SYP, PSD-95 and GAP-43 in hippocampus (F (4, 27)=3.495, P<0.05; F (4, 27)=2.965, P<0.05; F (4, 27)=4.365, P<0.01, respectively), and improved the synaptic ultra-structure damage in model rats. CONCLUSION: TSX could significantly improve the impairments of learning and memory. The preliminary mechanism might associate with its protection effects against oxidative stress damage, cholinergic system deficiency and synaptic damage. TSX are perfectly suitable for AD patients as medicine or functional food, which would be a new candidate to treat AD.


Assuntos
Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória , Estresse Oxidativo/efeitos dos fármacos , Sapindaceae/química , Saponinas/farmacologia , Sinapses/patologia , Triterpenos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , China , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Sinapses/ultraestrutura , Triterpenos/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-24976855

RESUMO

The effects of xanthoceraside on learning and memory impairment were investigated and the possible mechanism associated with the protection of mitochondria was also preliminarily explored in Alzheimer's disease (AD) mice model induced by intracerebroventricular (i.c.v.) injection of Aß1-42. The results indicated that xanthoceraside (0.08-0.32 mg/kg) significantly improved learning and memory impairment in Morris water maze test and Y-maze test. Xanthoceraside significantly reversed the aberrant decrease of ATP levels and attenuated the abnormal increase of ROS levels both in the cerebral cortex and hippocampus in mice injected with Aß1-42. Moreover, xanthoceraside dose dependently reversed the decrease of COX, PDHC, and KGDHC activity in isolated cerebral cortex mitochondria of the mice compared with Aß1-42 injected model mice. In conclusion, xanthoceraside could improve learning and memory impairment, promote the function of mitochondria, decrease the production of ROS, and inhibit oxidative stress. The improvement effects on mitochondria may be through withstanding the damage of Aß to mitochondrial respiratory chain and the key enzymes in Kreb's cycle. Therefore, the results from present study and previous study indicate that xanthoceraside could be a competitive candidate for the treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA