Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 287(Pt 1): 131944, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34438210

RESUMO

Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Humanos , Fósforo , Águas Residuárias
2.
J Biosci Bioeng ; 129(6): 672-678, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088137

RESUMO

l-Asparaginases have the potential to inhibit the formation of acrylamide, a harmful toxin formed during high temperature processing of food. A novel bacterium which produces l-asparaginase was screened. Type I l-asparaginase gene from Acinetobacter soli was cloned and expressed in Escherichia coli. The recombinant l-asparaginase had an activity of 42.0 IU mL-1 and showed no activity toward l-glutamine and d-asparagine. The recombinant l-asparaginase exhibited maximum catalytic activity at pH 8.0 and 40°C. The enzyme was stable in the pH ranging from 6.0 to 9.0. The activity of the recombinant enzyme was substantially enhanced by Ba2+, dithiothreitol, and ß-mercaptoethanol. The Km and Vmax values of the l-asparaginase for the l-asparagine were 3.22 mmol L-1 and 1.55 IU µg-1, respectively. Moreover, the recombinant l-asparaginase had the ability to mitigate acrylamide formation in potato chips. Compared with the untreated group, the content of acrylamide in samples treated with the enzyme was effectively decreased by 55.9%. These results indicate that the novel type I l-asparaginase has the potential for application in the food processing industry.


Assuntos
Acinetobacter/enzimologia , Acrilamida/metabolismo , Asparaginase/metabolismo , Solanum tuberosum/metabolismo , Acinetobacter/genética , Asparaginase/genética , Asparagina/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamina/metabolismo , Lanches
3.
Bioresour Technol ; 294: 122158, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31550634

RESUMO

Microalgae are rich in valuable biomolecules and grow on non-arable land with rapid growth rate, which has a host of new possibility as alternative protein sources. In the present study, extraction of proteins from Chlorella vulgaris via an efficient technique, Liquid Triphasic Flotation (LTF) system, was studied. The optimized conditions in LTF system were 70% v/v of t-butanol, 40% w/v of salt solution, 0.5% w/v of biomass, pH 5.54, 1:1 of salt to t-butanol solution, and 10 min of air flotation time to attain 87.23% of protein recovery and 56.72% of separation efficiency. Besides, the study on recycling t-butanol has demonstrated that only one run was sufficient to maintain the performance of system. The efficiency of LTF in extracting protein has performed better than just Three Phase Partitioning (TPP) system. LTF system is hence an effective protein extraction and purification method with minimum operation unit and processing time.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Extratos Vegetais , Reciclagem
4.
Mol Biotechnol ; 61(10): 715-724, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31350687

RESUMO

Biomolecules produced by living organisms can perform vast array of functions and play an important role in the cell. Important biomolecules such as lysozyme, bovine serum albumin (BSA), and bromelain are often studied by researchers due to their beneficial properties. The application of reverse micelles is an effective tool for protein separation from their sources due to the special system structure. Mechanisms of transferring biomolecules and factors that influence the extraction of biomolecules are reviewed in this paper. The enhancement of biomolecule extraction could be achieved depending on the properties of reverse micelles. This paper provides an overall review on lysozyme, BSA, and bromelain extraction by reverse micelle for various applications.


Assuntos
Bromelaínas/isolamento & purificação , Muramidase/isolamento & purificação , Soroalbumina Bovina/isolamento & purificação , Animais , Bovinos , Fracionamento Químico , Concentração de Íons de Hidrogênio , Micelas , Tensoativos/química
5.
J Biosci Bioeng ; 127(4): 492-498, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30416001

RESUMO

Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.


Assuntos
Chlorella vulgaris , Nutrientes/isolamento & purificação , Alimentos Marinhos , Águas Residuárias/microbiologia , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Biomassa , Técnicas de Cultura de Células/métodos , Chlorella vulgaris/citologia , Chlorella vulgaris/crescimento & desenvolvimento , Floculação/efeitos dos fármacos , Química Verde , Microalgas/citologia , Nitrogênio/química , Fósforo/química , Esgotos/microbiologia
6.
J Biosci Bioeng ; 126(2): 220-225, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29673988

RESUMO

In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential for solvent recovery which is beneficial to the environment. Phlorotannin is a bioactive compound that has gained much attention due to its health beneficial effect. Therefore, the isolation of phlorotannin is lucrative as it contains various biological activities that are capable to be utilised into food and pharmaceutical application. By using 2-propanol/ammonium sulphate system, the highest recovery of phlorotannin was 76.1% and 91.67% with purification factor of 2.49 and 1.59 from Padina australis and Sargassum binderi, respectively. A recycling study was performed and the salt phase of system was recycled where maximum salt recovery of 41.04% and 72.39% could be obtained from systems containing P. australis and S. binderi, respectively. Similar recovery of phlorotannin was observed after performing two cycles of the system, this concludes that the system has good recyclability and eco-friendly.


Assuntos
Química Verde/métodos , Phaeophyceae/química , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Taninos/isolamento & purificação , 2-Propanol/metabolismo , Etanol/metabolismo , Estudos de Viabilidade , Reciclagem/métodos , Sargassum/química , Alga Marinha/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA