RESUMO
Obesity is a pathophysiological condition, dependent on body fat accumulation, that progressively induces systemic oxidative stress/inflammation leading to a set of associated clinical manifestations, including male infertility. CircRNAs, covalently closed RNA molecules, are key regulators of sperm quality. Recently, we have characterized a complete profile of high-fat diet (HFD) spermatic circRNA cargo, predicting paternal circRNA dependent networks (ceRNETs), potentially involved in sperm oxidative stress and motility anomalies. In the current work, using HFD C57BL6/J male mice, orally treated with a mix of bioactive molecules (vitamin C; vitamin B12; vitamin E; selenium-L-methionine; glutathione-GSH) for 4 weeks, a reversion of HFD phenotype was observed. In addition, the functional action of the proposed formulations on circRNA biogenesis was evaluated by assessing the endogenous spermatic FUS-dependent backsplicing machinery and related circRNA cargo. After that, spermatic viability and motility were also analyzed. Paternal ceRNETs, potentially involved in oxidative stress regulation and sperm motility defects, were identified and used to suggest that the beneficial action of the food supplements here conveniently formulated on sperm motility was likely due to the recovery of circRNA profile. Such a hypothesis was, then, verified by an in vitro assay.
Assuntos
Antioxidantes , RNA Circular , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , RNA Circular/genética , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Obesidade/tratamento farmacológicoRESUMO
The etiology of human asthenozoospermia is multifactorial. The need to unveil molecular mechanisms underlying this state of infertility is, thus, impelling. Circular RNAs (circRNAs) are involved in microRNA (miRNA) inhibition by a sponge activity to protect mRNA targets. All together they form the competitive endogenous RNA network (ceRNET). Recently, we have identified differentially expressed circRNAs (DE-circRNAs) in normozoospermic and asthenozoospermic patients, associated with high-quality (A-spermatozoa) and low-quality (B-spermatozoa) sperm. Here, we carried out a differential analysis of CRISP2, CATSPER1 and PATE1 mRNA expression in good quality (A-spermatozoa) and low quality (B-spermatozoa) sperm fractions collected from both normozoospermic volunteers and asthenozoospermic patients. These sperm fractions are usually separated on the basis of morphology and motility parameters by a density gradient centrifugation. B-spermatozoa showed low levels of mRNAs. Thus, we identified the possible ceRNET responsible for regulating their expression by focusing on circTRIM2, circEPS15 and circRERE. With the idea that motility perturbations could be rooted in quantitative changes of transcripts in sperm, we evaluated circRNA and mRNA modulation in A-spermatozoa and B-spermatozoa after an oral amino acid supplementation known to improve sperm motility. The profiles of CRISP2, CATSPER1 and PATE1 proteins in the same fractions of sperm well matched with the transcript levels. Our data may strengthen the role of circRNAs in asthenozoospermia and shed light on the molecular pathways linked to sperm motility regulation.
Assuntos
Astenozoospermia/metabolismo , Canais de Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Membrana/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Adulto , Aminoácidos/administração & dosagem , Astenozoospermia/diagnóstico , Astenozoospermia/tratamento farmacológico , Astenozoospermia/genética , Canais de Cálcio/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Suplementos Nutricionais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Adulto JovemRESUMO
Bisphenol A is an environment-polluting industrial chemical able to interfere with the endocrine system. An obesogenic effect in perinatally exposed rodents has been described as estrogenic activity. We exposed male mice to Bisphenol A during fetal-perinatal period (from 10 days post coitum to 31 days post partum) and investigated the effects of this early-life exposure at 78 days of age. Body weight, food intake, fat mass, and hypothalamic signals related to anorexigenic control of food intake were analyzed. Results show that Bisphenol A exposure reduced body weight and food intake. In addition, the exposure decreased epididymal fat mass and adiposity, acting negatively on adipocyte volume. At hypothalamic level, Bisphenol A exposure reduced the expression of the cannabinoid receptor 1 and induced gene expression of cocaine and amphetamine-regulated transcript-1. This observation suggests that Bisphenol A induces activation of anorexigenic signals via down-regulation of the hypothalamic cannabinoid receptor 1 with negative impact on food intake.
Assuntos
Depressores do Apetite/farmacologia , Compostos Benzidrílicos/farmacologia , Canabinoides/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Fenóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , CamundongosRESUMO
Endocannabinoids - primarily anandamide (AEA) and 2-arachidonoylglycerol (2-AG) - are lipophilic molecules that bind to cannabinoid receptors (CB1 and CB2). They affect neuroendocrine activity inhibiting gonadotropin releasing hormone (GnRH) secretion and testosterone production in rodents, through a molecular mechanism supposed to be hypothalamus dependent. In order to investigate such a role, we choose the seasonal breeder, the anuran amphibian Rana esculenta, an experimental model in which components of the endocannabinoid system have been characterized. In February, at the onset of a new spermatogenetic wave, we carried out in vitro incubations of frog testis with AEA, at 10(-9)M dose. Such a treatment had no effect on the expression of cytochrome P450 17alpha hydroxylase/17,20 lyase (cyp17) nor 3-ß-hydroxysteroid dehydrogenase/Δ-5-4 isomerase (3ß-HSD), key enzymes of steroidogenesis. To understand whether or not the functionality of the hypothalamus-pituitary axis could be essential to support the role of endocannabinoids in steroidogenesis, frogs were injected with AEA, at 10(-8)M dose. Differently from in vitro experiment, the in vivo administration of AEA reduced the expression of cyp17 and 3ß-HSD. Whereas the effect on 3ß-HSD was counteracted by SR141716A (Rimonabant) - a selective antagonist of CB1, thus indicating a CB1 dependent modulation - the effect on cyp17 was not, suggesting a possible involvement of receptors other than CB1, probably the type-1 vanilloid receptor (TRPV1), since AEA works as an endocannabinoid and an endovanilloid as well. In conclusion our results indicate that endocannabinoids, via CB1, inhibit the expression of 3ß-HSD in frog testis travelling along the hypothalamus-pituitary axis.