Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 57(2): 311-321, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28055203

RESUMO

Despite its remarkable importance in the arena of drug design, serotonin 1A receptor (5-HT1A) has been elusive to the X-ray crystallography community. This lack of direct structural information not only hampers our knowledge regarding the binding modes of many popular ligands (including the endogenous neurotransmitter-serotonin), but also limits the search for more potent compounds. In this paper we shed new light on the 3D pharmacological properties of the 5-HT1A receptor by using a ligand-guided approach (ALiBERO) grounded in the Internal Coordinate Mechanics (ICM) docking platform. Starting from a homology template and set of known actives, the method introduces receptor flexibility via Normal Mode Analysis and Monte Carlo sampling, to generate a subset of pockets that display enriched discrimination of actives from inactives in retrospective docking. Here, we thoroughly investigated the repercussions of using different protein templates and the effect of compound selection on screening performance. Finally, the best resulting protein models were applied prospectively in a large virtual screening campaign, in which two new active compounds were identified that were chemically distinct from those described in the literature.


Assuntos
Simulação de Acoplamento Molecular , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Homologia Estrutural de Proteína , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligantes , Método de Monte Carlo , Ligação Proteica , Conformação Proteica
2.
PLoS One ; 8(12): e84510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367669

RESUMO

This study explores a new approach to pharmacophore screening involving the use of an optimized linear combination of models instead of a single hypothesis. The implementation and evaluation of the developed methodology are performed for a complete known chemical space of 5-HT1AR ligands (3616 active compounds with K i < 100 nM) acquired from the ChEMBL database. Clusters generated from three different methods were the basis for the individual pharmacophore hypotheses, which were assembled into optimal combinations to maximize the different coefficients, namely, MCC, accuracy and recall, to measure the screening performance. Various factors that influence filtering efficiency, including clustering methods, the composition of test sets (random, the most diverse and cluster population-dependent) and hit mode (the compound must fit at least one or two models from a final combination) were investigated. This method outmatched both single hypothesis and random linear combination approaches.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Receptor 5-HT1A de Serotonina/metabolismo , Análise por Conglomerados , Ligantes , Modelos Moleculares , Conformação Molecular , Reprodutibilidade dos Testes
3.
Eur J Med Chem ; 47(1): 24-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22071255

RESUMO

The two main groups of antidepressant drugs, the tricyclic antidepressants (TCAs) and the selective serotonin reuptake inhibitors (SSRIs), as well as several other compounds, act by inhibiting the serotonin transporter (SERT). However, the binding mode and molecular mechanism of inhibition in SERT are not fully understood. In this study, five classes of SERT inhibitors were docked into an outward-facing SERT homology model using a new 4D ensemble docking protocol. Unlike other docking protocols, where protein flexibility is not considered or is highly dependent on the ligand structure, flexibility was here obtained by side chain sampling of the amino acids of the binding pocket using biased probability Monte Carlo (BPMC) prior to docking. This resulted in the generation of multiple binding pocket conformations that the ligands were docked into. The docking results showed that the inhibitors were stacked between the aromatic amino acids of the extracellular gate (Y176, F335) presumably preventing its closure. The inhibitors interacted with amino acids in both the putative substrate binding site and more extracellular regions of the protein. A general structure-docking-based pharmacophore model was generated to explain binding of all studied classes of SERT inhibitors. Docking of a test set of actives and decoys furthermore showed that the outward-facing ensemble SERT homology model consistently and selectively scored the majority of active compounds above decoys, which indicates its usefulness in virtual screening.


Assuntos
Modelos Moleculares , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Ligantes , Mazindol/química , Mazindol/metabolismo , Mazindol/farmacologia , Método de Monte Carlo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/química , Tropanos/química , Tropanos/metabolismo , Tropanos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA