Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 342, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580686

RESUMO

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Assuntos
Genoma de Planta , Silybum marianum , Melhoramento Vegetal , Plantas Medicinais/genética , Silybum marianum/genética , Cromossomos de Plantas
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511600

RESUMO

Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.


Assuntos
Melaninas , Oryza , Melaninas/metabolismo , Flavonoides/farmacologia , Polifenóis/farmacologia , Regulação para Baixo , Oryza/metabolismo , Transdução de Sinais , Fator de Transcrição Associado à Microftalmia/metabolismo , Antígeno MART-1/metabolismo , Antígeno MART-1/farmacologia , Raios Ultravioleta , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral
3.
Plants (Basel) ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514316

RESUMO

Milk thistle (Silybum marianum) belongs to the Asteraceae family and is a medicinal plant native to the Mediterranean Basin. Silymarin in achene is a widely used herbal product for chronic liver disease. There is growing interest in natural medicine using milk thistle in Korea, but the raw material completely relies on imports. Despite its economic importance, phenotypic evaluations of native resources of milk thistle in Korea have not been carried out. In addition, genomic research and molecular marker development are very limited in milk thistle. In this study, we evaluated 220 milk thistle resources consisting of 172 accessions collected from the domestic market, and 48 accessions isolated from 6 accessions distributed by the National Agrobiodiversity Center in Korea. Six plant characteristics (height, seed weight, number of flowers, seed weight per flower, spine length, and color at harvest) were measured, and six samples (M01-M06) were selected to represent the genetic diversity of the population for genomic research. To develop PCR-based and co-dominant insertion/deletion (InDel) markers, we performed genome-wide InDel detection by comparing the whole-genome resequencing data of the six selected accessions with the reference genome sequence (GCA_001541825). As a result, 177 InDel markers with high distinguishability and reproducibility were selected from the 30,845 InDel variants. Unknowingly imported alien plant resources could easily be genetically mixed, and jeopardized seed purity can cause continuous difficulties in the development of high value-added agricultural platforms utilizing natural products. The selected plant materials and 177 validated InDel markers developed via whole-genome resequencing analysis could be valuable resources for breeding, conservation, and ecological studies of natives to Korea, along with acceleration of Silybum marianum industrialization.

4.
Theor Appl Genet ; 127(6): 1387-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24728072

RESUMO

KEY MESSAGE: We have developed allele-specific markers for molecular breeding to transfer the PSTOL1 gene from Kasalath to African mega-varieties, including NERICAs, to improve their tolerance to P-deficient soil. The deficiency of phosphorus (P) in soil is a major problem in Sub-Saharan Africa due to general nutrient depletion and the presence of P-fixing soils. Developing rice cultivars with enhanced P efficiency would, therefore, represent a sustainable strategy to improve the livelihood of resource-poor farmers. Recently the Pup1 locus, a major QTL for tolerance to P deficiency in soil, was successfully narrowed-down to a major gene, the protein kinase OsPSTOL1 (P-starvation tolerance), which was found to be generally absent from modern irrigated rice varieties. Our target is to improve the tolerance of African mega-varieties to P deficiency through marker-assisted introgression of PSTOL1. As a first step, we have determined the Pup1 haplotype and surveyed the presence or absence of PSTOL1 and other genes of the Pup1 locus in African mega-varieties, NERICAs (New Rice for Africa) and their Oryza glaberrima parents. Here, we report the presence of a novel PSTOL1 allele in upland NERICAs that was inherited from the O. glaberrima parent CG14. This allele showed a 35 base-pair substitution when aligned to the Kasalath allele, but maintained a fully conserved kinase domain, and is present in most O. glaberrima accessions evaluated. In-silico and marker analysis indicated that many other genes of the Kasalath Pup1 locus were missing in the O. glaberrima genome, including the dirigent-like gene OsPupK20-2, which was shown to be downstream of PSTOL1. We have developed several allele-specific markers for the use for molecular breeding to transfer the PSTOL1 gene from Kasalath to African mega-varieties, including NERICAs.


Assuntos
Genes de Plantas , Oryza/genética , Fósforo/metabolismo , Estresse Fisiológico/genética , Sequência de Bases , Clonagem Molecular , Genótipo , Dados de Sequência Molecular , Oryza/metabolismo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Solo/química
5.
Nature ; 488(7412): 535-9, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22914168

RESUMO

As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago. However, its functional mechanism remained elusive until the locus was sequenced, showing the presence of a Pup1-specific protein kinase gene, which we have named phosphorus-starvation tolerance 1 (PSTOL1). This gene is absent from the rice reference genome and other phosphorus-starvation-intolerant modern varieties. Here we show that overexpression of PSTOL1 in such varieties significantly enhances grain yield in phosphorus-deficient soil. Further analyses show that PSTOL1 acts as an enhancer of early root growth, thereby enabling plants to acquire more phosphorus and other nutrients. The absence of PSTOL1 and other genes-for example, the submergence-tolerance gene SUB1A-from modern rice varieties underlines the importance of conserving and exploring traditional germplasm. Introgression of this quantitative trait locus into locally adapted rice varieties in Asia and Africa is expected to considerably enhance productivity under low phosphorus conditions.


Assuntos
Adaptação Fisiológica/genética , Oryza/enzimologia , Oryza/fisiologia , Fósforo/deficiência , Proteínas Quinases/metabolismo , Cruzamento , Secas , Genes de Plantas/genética , Genoma de Planta/genética , Dados de Sequência Molecular , Oryza/classificação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Locos de Características Quantitativas/genética
6.
Plant Physiol ; 156(3): 1202-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602323

RESUMO

The major quantitative trait locus (QTL) Phosphorus uptake1 (Pup1) confers tolerance of phosphorus deficiency in soil and is currently one of the most promising QTLs for the development of tolerant rice (Oryza sativa) varieties. To facilitate targeted introgression of Pup1 into intolerant varieties, the gene models predicted in the Pup1 region in the donor variety Kasalath were used to develop gene-based molecular markers that are evenly distributed over the fine-mapped 278-kb QTL region. To validate the gene models and optimize the markers, gene expression analyses and partial allelic sequencing were conducted. The markers were tested in more than 80 diverse rice accessions revealing three main groups with different Pup1 allele constitution. Accessions with tolerant (group I) and intolerant (group III) Pup1 alleles were distinguished from genotypes with Kasalath alleles at some of the analyzed loci (partial Pup1; group II). A germplasm survey additionally confirmed earlier data showing that Pup1 is largely absent from irrigated rice varieties but conserved in varieties and breeding lines adapted to drought-prone environments. A core set of Pup1 markers has been defined, and sequence polymorphisms suitable for single-nucleotide polymorphism marker development for high-throughput genotyping were identified. Following a marker-assisted backcrossing approach, Pup1 was introgressed into two irrigated rice varieties and three Indonesian upland varieties. First phenotypic evaluations of the introgression lines suggest that Pup1 is effective in different genetic backgrounds and environments and that it has the potential to significantly enhance grain yield under field conditions.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/genética , Fósforo/deficiência , Locos de Características Quantitativas/genética , Sequência de Bases , Cruzamento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Marcadores Genéticos , Haplótipos/genética , Modelos Genéticos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Fenótipo , Fósforo/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/efeitos dos fármacos , Sementes/genética , Homologia de Sequência do Ácido Nucleico
7.
Theor Appl Genet ; 120(6): 1073-86, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20035315

RESUMO

Marker-assisted breeding is a very useful tool for breeders but still lags behind its potential because information on the effect of quantitative trait loci (QTLs) in different genetic backgrounds and ideal molecular markers are unavailable. Here, we report on some first steps toward the validation and application of the major rice QTL Phosphate uptake 1 (Pup1) that confers tolerance of phosphorus (P) deficiency in rice (Oryza sativa L.). Based on the Pup1 genomic sequence of the tolerant donor variety Kasalath that recently became available, markers were designed that target (1) putative genes that are partially conserved in the Nipponbare reference genome and (2) Kasalath-specific genes that are located in a large insertion-deletion (INDEL) region that is absent in Nipponbare. Testing these markers in 159 diverse rice accessions confirmed their diagnostic value across genotypes and showed that Pup1 is present in more than 50% of rice accessions adapted to stress-prone environments, whereas it was detected in only about 10% of the analyzed irrigated/lowland varieties. Furthermore, the Pup1 locus was detected in more than 80% of the analyzed drought-tolerant rice breeding lines, suggesting that breeders are unknowingly selecting for Pup1. A hydroponics experiment revealed genotypic differences in the response to P deficiency between upland and irrigated varieties but confirmed that root elongation is independent of Pup1. Contrasting Pup1 near-isogenic lines (NILs) were subsequently grown in two different P-deficient soils and environments. Under the applied aerobic growth conditions, NILs with the Pup1 locus maintained significantly higher grain weight plant(-1) under P deprivation in comparison with intolerant sister lines without Pup1. Overall, the data provide evidence that Pup1 has the potential to improve yield in P-deficient and/or drought-prone environments and in diverse genetic backgrounds.


Assuntos
Genes de Plantas/genética , Oryza/genética , Fósforo/metabolismo , Mapeamento Físico do Cromossomo/métodos , Locos de Características Quantitativas/genética , Marcadores Genéticos , Haplótipos/genética , Hidroponia , Fenótipo , Filipinas , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Solo
8.
Plant Biotechnol J ; 7(5): 456-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19422603

RESUMO

The phosphorus uptake 1 (Pup1) locus was identified as a major quantitative trait locus (QTL) for tolerance of phosphorus deficiency in rice. Near-isogenic lines with the Pup1 region from tolerant donor parent Kasalath typically show threefold higher phosphorus uptake and grain yield in phosphorus-deficient field trials than the intolerant parent Nipponbare. In this study, we report the fine mapping of the Pup1 locus to the long arm of chromosome 12 (15.31-15.47 Mb). Genes in the region were initially identified on the basis of the Nipponbare reference genome, but did not reveal any obvious candidate genes related to phosphorus uptake. Kasalath BAC clones were therefore sequenced and revealed a 278-kbp sequence significantly different from the syntenic regions in Nipponbare (145 kb) and in the indica reference genome of 93-11 (742 kbp). Size differences are caused by large insertions or deletions (INDELs), and an exceptionally large number of retrotransposon and transposon-related elements (TEs) present in all three sequences (45%-54%). About 46 kb of the Kasalath sequence did not align with the entire Nipponbare genome, and only three Nipponbare genes (fatty acid alpha-dioxygenase, dirigent protein and aspartic proteinase) are highly conserved in Kasalath. Two Nipponbare genes (expressed proteins) might have evolved by at least three TE integrations in an ancestor gene that is still present in Kasalath. Several predicted Kasalath genes are novel or unknown genes that are mainly located within INDEL regions. Our results highlight the importance of sequencing QTL regions in the respective donor parent, as important genes might not be present in the current reference genomes.


Assuntos
Mapeamento Cromossômico , Oryza/genética , Locos de Características Quantitativas , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Elementos de DNA Transponíveis , DNA de Plantas/genética , Mutação INDEL , Oryza/metabolismo , Fósforo/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia
9.
Theor Appl Genet ; 116(8): 1117-27, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18335199

RESUMO

Hybrid breakdown (HB), a phenomenon of reduced viability or fertility accompanied with retarded growth in hybrid progenies, often arises in the offspring of intersubspecific hybrids between indica and japonica in rice. We detected HB plants in F8 recombinant inbred lines derived from the cross between an indica variety, Milyang 23, and a japonica variety, Tong 88-7. HB plants showed retarded growth, with fewer tillers and spikelets. Genetic analysis revealed that HB was controlled by the complementary action of two recessive genes, hwh1 and hwh2, originating from each of both parents, which were fine-mapped on the short arm of chromosome 2 and on the near centromere region of the long arm of chromosome 11, respectively. A comparison of the sequences of candidate genes among both parents and HB plants revealed that hwh1 encoded a putative glucose-methanol-choline oxidoreductase with one amino acid change compared to Hwh1 and that hwh2 probably encoded a putative hexose transporter with a six amino acid insertion compared to Hwh2. Investigation of the distribution of these alleles among 54 japonica and indica cultivars using candidate gene-based markers suggested that the two loci might be involved in developing reproductive barriers between two subspecies.


Assuntos
Mapeamento Cromossômico , Genes de Plantas/genética , Ligação Genética , Oryza/genética , Locos de Características Quantitativas , Cromossomos de Plantas , Cruzamentos Genéticos , Primers do DNA/química , Primers do DNA/genética , DNA de Plantas , Células Híbridas , Oryza/crescimento & desenvolvimento , Fragmentos de Peptídeos/genética , Fenótipo
10.
Plant J ; 54(2): 190-204, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18182026

RESUMO

A rice genic male-sterility gene ms-h is recessive and has a pleiotropic effect on the chalky endosperm. After fine mapping, nucleotide sequencing analysis of the ms-h gene revealed a single nucleotide substitution at the 3'-splice junction of the 14th intron of the UDP-glucose pyrophosphorylase 1 (UGPase1; EC2.7.7.9) gene, which causes the expression of two mature transcripts with abnormal sizes caused by the aberrant splicing. An in vitro functional assay showed that both proteins encoded by the two abnormal transcripts have no UGPase activity. The suppression of UGPase by the introduction of a UGPase1-RNAi construct in wild-type plants nearly eliminated seed set because of the male defect, with developmental retardation similar to the ms-h mutant phenotype, whereas overexpression of UGPase1 in ms-h mutant plants restored male fertility and the transformants produced T(1) seeds that segregated into normal and chalky endosperms. In addition, both phenotypes were co-segregated with the UGPase1 transgene in segregating T(1) plants, which demonstrates that UGPase1 has functional roles in both male sterility and the development of a chalky endosperm. Our results suggest that UGPase1 plays a key role in pollen development as well as seed carbohydrate metabolism.


Assuntos
Oryza/enzimologia , Oryza/fisiologia , Infertilidade das Plantas/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Oryza/genética , Infertilidade das Plantas/fisiologia , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Interferência de RNA , Sementes/enzimologia , Sementes/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA