Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotheranostics ; 1(1): 38-58, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29071178

RESUMO

Phototherapies involve the irradiation of target tissues with light. To further enhance selectivity and potency, numerous molecularly targeted photosensitizers and photoactive nanoparticles have been developed. Active targeting typically involves harnessing the affinity between a ligand and a cell surface receptor for improved accumulation in the targeted tissue. Targeting ligands including peptides, proteins, aptamers and small molecules have been explored for phototherapy. In this review, recent examples of targeted nanomaterials used in phototherapy are summarized.

2.
Adv Healthc Mater ; 6(16)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28504409

RESUMO

Intratumoral (IT) drug injections reduce systemic toxicity, but delivered volumes and distribution can be inconsistent. To improve IT delivery paradigms, porphyrin-phospholipid (PoP) liposomes are passively loaded with three hydrophilic cargos: sulforhodamine B, a fluorophore; gadolinium-gadopentetic acid, a magnetic resonance (MR) agent; and oxaliplatin, a colorectal cancer chemotherapeutic. Liposome composition is optimized so that cargo is retained in serum and storage, but is released in less than 1 min with exposure to near infrared light. Light-triggered release occurs with PoP-induced photooxidation of unsaturated lipids and all cargos release concurrently. In subcutaneous murine colorectal tumors, drainage of released cargo is delayed when laser treatment occurs 24 h after IT injection, at doses orders of magnitude lower than systemic ones. Delayed light-triggering results in substantial tumor shrinkage relative to controls a week following treatment, although regrowth occurs subsequently. MR imaging reveals that over this time frame, pools of liposomes within the tumor migrate to adjacent regions, possibly leading to altered spatial distribution during triggered drug release. Although further characterization of cargo loading and release is required, this proof-of-principle study suggests that multimodal theranostic IT delivery approaches hold potential to both guide injections and interpret outcomes, in particular when combined with chemo-phototherapy.


Assuntos
Antineoplásicos , Meios de Contraste , Corantes Fluorescentes , Lipossomos , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Fosfolipídeos/química , Porfirinas/química
3.
Theranostics ; 6(5): 688-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022416

RESUMO

Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths.


Assuntos
Indóis/farmacocinética , Imagem Óptica/métodos , Fósforo/farmacocinética , Radiossensibilizantes/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Fenômenos Químicos , Galinhas , Humanos , Indóis/química , Isoindóis , Camundongos , Fósforo/química , Técnicas Fotoacústicas/métodos , Radiossensibilizantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA