Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 55(2): 530-540, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34219305

RESUMO

BACKGROUND: Biliary phosphatidylcholine (PtdC) concentration plays a role in the pathogenesis of bile duct diseases. In vivo phosphorus-31 magnetic resonance spectroscopy (31 P-MRS) at 7 T offers the possibility to assess this concentration noninvasively with high spectral resolution and signal intensity. PURPOSE: Comparison of PtdC levels of cholangiopathic patient groups to a control group using a measured T1 relaxation time of PtdC in healthy subjects. STUDY TYPE: Case control. SUBJECTS: Two patient groups with primary sclerosing cholangitis (PSC, 2f/3 m; age: 43 ± 7 years) and primary biliary cholangitis (PBC, 4f/2 m; age: 57 ± 6 years), and a healthy control group (CON, 2f/3 m; age: 38 ± 7 years). Ten healthy subjects for the assessment of the T1 relaxation time of PtdC. FIELD STRENGTH/SEQUENCE: A 3D phase-encoded pulse-acquire 31 P-MRSI sequence for PtdC quantification and a 1D image-selected in vivo 31 P spectroscopy for T1 estimation at 7 T, and a T2-weighted half-Fourier single-shot turbo spin echo MRI sequence for volumetry at 3 T. ASSESSMENT: Calculation of gallbladder volumes and PtdC concentration in groups using hepatic gamma-adenosine triphosphate signal as an internal reference and correction for insufficient relaxation of PtdC with a T1 value assessed in healthy subjects. STATISTICAL TESTS: Group comparison of PtdC content and gallbladder volumes of the PSC/PBC and CON group using Student's t-tests with a significance level of 5%. RESULTS: PtdC T1 value of 357 ± 85 msec in the gallbladder. Significant lower PtdC content for the PSC group, and for the female subgroup of the PBC group compared to the CON group (PSC/CON: 5.74 ± 0.73 mM vs. 9.64 ± 0.97 mM, PBC(f)/CON: 5.77 ± 1.44 mM vs. 9.64 ± 0.97 mM). Significant higher gallbladder volumes of the patient groups compared to the CON group (PSC/CON: 66.3 ± 15.8 mL vs. 20.9 ± 2.2 mL, PBC/CON: 49.8 ± 18.2 mL vs. 20.9 ± 2.2 mL). DATA CONCLUSION: This study demonstrated the application of a 31 P-MRSI protocol for the quantification of PtdC in the human gallbladder at 7 T. Observed differences in PtdC concentration suggest that this metabolite could serve as a biomarker for specific hepatobiliary disorders. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Colangite Esclerosante , Vesícula Biliar , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Fosfatidilcolinas , Fósforo , Projetos Piloto
2.
J Magn Reson Imaging ; 49(2): 597-607, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30291654

RESUMO

BACKGROUND: Hepatic disorders are often associated with changes in the concentration of phosphorus-31 (31 P) metabolites. Absolute quantification offers a way to assess those metabolites directly but introduces obstacles, especially at higher field strengths (B0 ≥ 7T). PURPOSE: To introduce a feasible method for in vivo absolute quantification of hepatic 31 P metabolites and assess its clinical value by probing differences related to volunteers' age and body mass index (BMI). STUDY TYPE: Prospective cohort. SUBJECTS/PHANTOMS: Four healthy volunteers included in the reproducibility study and 19 healthy subjects arranged into three subgroups according to BMI and age. Phantoms containing 31 P solution for correction and validation. FIELD STRENGTH/SEQUENCE: Phase-encoded 3D pulse-acquire chemical shift imaging for 31 P and single-volume 1 H spectroscopy to assess the hepatocellular lipid content at 7T. ASSESSMENT: A phantom replacement method was used. Spectra located in the liver with sufficient signal-to-noise ratio and no contamination from muscle tissue, were used to calculate following metabolite concentrations: adenosine triphosphates (γ- and α-ATP); glycerophosphocholine (GPC); glycerophosphoethanolamine (GPE); inorganic phosphate (Pi ); phosphocholine (PC); phosphoethanolamine (PE); uridine diphosphate-glucose (UDPG); nicotinamide adenine dinucleotide-phosphate (NADH); and phosphatidylcholine (PtdC). Correction for hepatic lipid volume fraction (HLVF) was performed. STATISTICAL TESTS: Differences assessed by analysis of variance with Bonferroni correction for multiple comparison and with a Student's t-test when appropriate. RESULTS: The concentrations for the young lean group corrected for HLVF were 2.56 ± 0.10 mM for γ-ATP (mean ± standard deviation), α-ATP: 2.42 ± 0.15 mM, GPC: 3.31 ± 0.27 mM, GPE: 3.38 ± 0.87 mM, Pi : 1.42 ± 0.20 mM, PC: 1.47 ± 0.24 mM, PE: 1.61 ± 0.20 mM, UDPG: 0.74 ± 0.17 mM, NADH: 1.21 ± 0.38 mM, and PtdC: 0.43 ± 0.10 mM. Differences found in ATP levels between lean and overweight volunteers vanished after HLVF correction. DATA CONCLUSION: Exploiting the excellent spectral resolution at 7T and using the phantom replacement method, we were able to quantify up to 10 31 P-containing hepatic metabolites. The combination of 31 P magnetic resonance spectroscopy imaging data acquisition and HLVF correction was not able to show a possible dependence of 31 P metabolite concentrations on BMI or age, in the small healthy population used in this study. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:597-607.


Assuntos
Índice de Massa Corporal , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Fósforo/análise , Adulto , Fatores Etários , Idoso , Calibragem , Feminino , Voluntários Saudáveis , Ventrículos do Coração/diagnóstico por imagem , Humanos , Hepatopatias/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
Sci Rep ; 6: 20087, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26838588

RESUMO

Defects in skeletal muscle energy metabolism are indicative of systemic disorders such as obesity or type 2 diabetes. Phosphorus magnetic resonance spectroscopy ((31)P-MRS), in particularly dynamic (31)P-MRS, provides a powerful tool for the non-invasive investigation of muscular oxidative metabolism. The increase in spectral and temporal resolution of (31)P-MRS at ultra high fields (i.e., 7T) uncovers new potential for previously implemented techniques, e.g., saturation transfer (ST) or highly resolved static spectra. In this study, we aimed to investigate the differences in muscle metabolism between overweight-to-obese sedentary (Ob/Sed) and lean active (L/Ac) individuals through dynamic, static, and ST (31)P-MRS at 7T. In addition, as the dynamic (31)P-MRS requires a complex setup and patient exercise, our aim was to identify an alternative technique that might provide a biomarker of oxidative metabolism. The Ob/Sed group exhibited lower mitochondrial capacity, and, in addition, static (31)P-MRS also revealed differences in the Pi-to-ATP exchange flux, the alkaline Pi-pool, and glycero-phosphocholine concentrations between the groups. In addition to these differences, we have identified correlations between dynamically measured oxidative flux and static concentrations of the alkaline Pi-pool and glycero-phosphocholine, suggesting the possibility of using high spectral resolution (31)P-MRS data, acquired at rest, as a marker of oxidative metabolism.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Fosfatos/análise , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Fósforo , Comportamento Sedentário
4.
NMR Biomed ; 28(10): 1283-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26313737

RESUMO

Ultrahigh-field, whole-body MR systems increase the signal-to-noise ratio (SNR) and improve the spectral resolution. Sequences with a short TE allow fast signal acquisition with low signal loss as a result of spin-spin relaxation. This is of particular importance in the liver for the precise quantification of the hepatocellular content of lipids (HCL). In this study, we introduce a spoiler Gradient-switching Ultrashort STimulated Echo AcqUisition (GUSTEAU) sequence, which is a modified version of a stimulated echo acquisition mode (STEAM) sequence, with a minimum TE of 6 ms. With the high spectral resolution at 7 T, the efficient elimination of water sidebands and the post-processing suppression of the water signal, we estimated the composition of fatty acids (FAs) via the detection of the olefinic lipid resonance and calculated the unsaturation index (UI) of hepatic FAs. The performance of the GUSTEAU sequence for the assessment of UI was validated against oil samples and provided excellent results in agreement with the data reported in the literature. When measuring HCL with GUSTEAU in 10 healthy volunteers, there was a high correlation between the results obtained at 7 and 3 T (R(2) = 0.961). The test-retest measurements yielded low coefficients of variation for HCL (4 ± 3%) and UI (11 ± 8%) when measured with the GUSTEAU sequence at 7 T. A negative correlation was found between UI and HCL (n = 10; p < 0.033). The ultrashort TE MRS sequence (GUSTEAU; TE = 6 ms) provided high repeatability for the assessment of HCL. The improved spectral resolution at 7 T with the elimination of water sidebands and the offline water subtraction also enabled an assessment of the unsaturation of FAs. This all highlights the potential use of this MRS acquisition scheme for studies of hepatic lipid composition in vivo.


Assuntos
Lipídeos/análise , Fígado/química , Espectroscopia de Ressonância Magnética/métodos , Adulto , Água Corporal , Óleo de Milho , Ácidos Graxos Insaturados/análise , Feminino , Humanos , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído
5.
NMR Biomed ; 27(4): 478-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24615903

RESUMO

Phosphorus ((31) P) MRS is a powerful tool for the non-invasive investigation of human liver metabolism. Four in vivo (31) P localization approaches (single voxel image selected in vivo spectroscopy (3D-ISIS), slab selective 1D-ISIS, 2D chemical shift imaging (CSI), and 3D-CSI) with different voxel volumes and acquisition times were demonstrated in nine healthy volunteers. Localization techniques provided comparable signal-to-noise ratios normalized for voxel volume and acquisition time differences, Cramer-Rao lower bounds (8.7 ± 3.3%1D-ISIS , 7.6 ± 2.5%3D-ISIS , 8.6 ± 4.2%2D-CSI , 10.3 ± 2.7%3D-CSI ), and linewidths (50 ± 24 Hz1D-ISIS , 34 ± 10 Hz3D-ISIS , 33 ± 10 Hz2D-CSI , 34 ± 11 Hz3D-CSI ). Longitudinal (T1 ) relaxation times of human liver metabolites at 7 T were assessed by 1D-ISIS inversion recovery in the same volunteers (n = 9). T1 relaxation times of hepatic (31) P metabolites at 7 T were the following: phosphorylethanolamine - 4.41 ± 1.55 s; phosphorylcholine - 3.74 ± 1.31 s; inorganic phosphate - 0.70 ± 0.33 s; glycerol 3-phosphorylethanolamine - 6.19 ± 0.91 s; glycerol 3-phosphorylcholine - 5.94 ± 0.73 s; γ-adenosine triphosphate (ATP) - 0.50 ± 0.08 s; α-ATP - 0.46 ± 0.07 s; ß-ATP - 0.56 ± 0.07 s. The improved spectral resolution at 7 T enabled separation of resonances in the phosphomonoester and phosphodiester spectral region as well as nicotinamide adenine dinucleotide and uridine diphosphoglucose signals. An additional resonance at 2.06 ppm previously assigned to phosphoenolpyruvate or phosphatidylcholine is also detectable. These are the first (31) P metabolite relaxation time measurements at 7 T in human liver, and they will help in the exploration of new, exciting questions in metabolic research with 7 T MR.


Assuntos
Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Adulto , Animais , Estudos de Viabilidade , Feminino , Humanos , Masculino , Metaboloma , Fósforo , Ratos , Fatores de Tempo
6.
NMR Biomed ; 26(12): 1714-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23949699

RESUMO

Phosphorus magnetic resonance spectroscopy ((31)P-MRS) enables the non-invasive evaluation of muscle metabolism. Resting Pi-to-ATP flux can be assessed through magnetization transfer (MT) techniques, and maximal oxidative flux (Q(max)) can be calculated by monitoring of phosphocreatine (PCr) recovery after exercise. In this study, the muscle metabolism parameters of 13 overweight-to-obese sedentary individuals were measured with both MT and dynamic PCr recovery measurements, and the interrelation between these measurements was investigated. In the dynamic experiments, knee extensions were performed at a workload of 30% of maximal voluntary capacity, and the consecutive PCr recovery was measured in a quadriceps muscle with a time resolution of 2 s with non-localized (31)P-MRS at 3 T. Resting skeletal muscle metabolism was assessed through MT measurements of the same muscle group at 7 T. Significant linear correlations between the Q(max) and the MT parameters k(ATP) (r = 0.77, P = 0.002) and F(ATP) (r = 0.62, P = 0.023) were found in the study population. This would imply that the MT technique can possibly be used as an alternative method to assess muscle metabolism when necessary (e.g. in individuals after stroke or in uncooperative patients).


Assuntos
Exercício Físico/fisiologia , Espectroscopia de Ressonância Magnética , Obesidade/fisiopatologia , Músculo Quadríceps/fisiopatologia , Descanso/fisiologia , Comportamento Sedentário , Trifosfato de Adenosina/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Fosfocreatina/metabolismo , Fósforo/metabolismo , Isótopos de Fósforo , Fatores de Tempo , Adulto Jovem
7.
Hepatology ; 50(4): 1079-86, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19637187

RESUMO

UNLABELLED: Increased hepatocellular lipids relate to insulin resistance and are typical for individuals with type 2 diabetes mellitus (T2DM). Steatosis and T2DM have been further associated with impaired muscular adenosine triphosphate (ATP) turnover indicating reduced mitochondrial fitness. Thus, we tested the hypothesis that hepatic energy metabolism could be impaired even in metabolically well-controlled T2DM. We measured hepatic lipid volume fraction (HLVF) and absolute concentrations of gammaATP, inorganic phosphate (Pi), phosphomonoesters and phosphodiesters using noninvasive (1)H/ (31)P magnetic resonance spectroscopy in individuals with T2DM (58 +/- 6 years, 27 +/- 3 kg/m (2)), and age-matched and body mass index-matched (mCON; 61 +/- 4 years, 26 +/- 4 kg/m (2)) and young lean humans (yCON; 25 +/- 3 years, 22 +/- 2 kg/m (2), P < 0.005, P < 0.05 versus T2DM and mCON). Insulin-mediated whole-body glucose disposal (M) and endogenous glucose production (iEGP) were assessed during euglycemic-hyperinsulinemic clamps. Individuals with T2DM had 26% and 23% lower gammaATP (1.68 +/- 0.11; 2.26 +/- 0.20; 2.20 +/- 0.09 mmol/L; P < 0.05) than mCON and yCON individuals, respectively. Further, they had 28% and 31% lower Pi than did individuals from the mCON and yCON groups (0.96 +/- 0.06; 1.33 +/- 0.13; 1.41 +/- 0.07 mmol/L; P < 0.05). Phosphomonoesters, phosphodiesters, and liver aminotransferases did not differ between groups. HLVF was not different between those from the T2DM and mCON groups, but higher (P = 0.002) than in those from the yCON group. T2DM had 13-fold higher iEGP than mCON (P < 0.05). Even after adjustment for HLVF, hepatic ATP and Pi related negatively to hepatic insulin sensitivity (iEGP) (r =-0.665, P = 0.010, r =-0.680, P = 0.007) but not to whole-body insulin sensitivity. CONCLUSION: These data suggest that impaired hepatic energy metabolism and insulin resistance could precede the development of steatosis in individuals with T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/fisiopatologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Fosfatos/metabolismo , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA