Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immune Netw ; 22(4): e34, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36081528

RESUMO

Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin D has diverse biological effect on bone and cartilage, and observational studies have suggested it potential benefit in OA progression and inflammation process. However, the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function were also measured. Vitamin-D (1,25(OH)2D3) and celecoxib were used to treat MIA-induced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, the expressions of MMP-13, IL-1ß, and MCP-1 in synovial tissues were remarkably attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA. Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be a promising treatment strategy in OA patients especially presenting vitamin D deficiency. Autophagy promoting strategy may attenuate OA progression through protecting cells from damage and inflammatory cell death.

2.
PLoS One ; 17(6): e0270351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749420

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common degenerative joint disease and is characterized by breakdown of joint cartilage. Coenzyme Q10 (CoQ10) exerts diverse biological effects on bone and cartilage; observational studies have suggested that CoQ10 may slow OA progression and inflammation. However, any effect of CoQ10 on OA remains unclear. Here, we investigated the therapeutic utility of CoQ10-micelles. METHODS: Seven-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. CoQ10-micelles were administered orally to MIA-induced OA rats; celecoxib served as the positive control. Pain, tissue destruction, and inflammation were measured. The expression levels of catabolic and inflammatory cell death markers were assayed in CoQ10-micelle-treated chondrocytes. RESULTS: Oral supplementation with CoQ10-micelles attenuated OA symptoms remarkably, including pain, tissue destruction, and inflammation. The expression levels of the inflammatory cytokines IL-1ß, IL-6, and MMP-13, and of the inflammatory cell death markers RIP1, RIP3, and pMLKL in synovial tissues were significantly reduced by CoQ10-micelle supplementation, suggesting that CoQ10-micelles might attenuate the synovitis of OA. CoQ10-micelle addition to cultured OA chondrocytes reduced the expression levels of catabolic and inflammatory cell death markers. CONCLUSIONS: CoQ10-micelles might usefully treat OA.


Assuntos
Cartilagem Articular , Dor Nociceptiva , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Morte Celular , Condrócitos/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Iodoacético , Masculino , Micelas , Dor Nociceptiva/metabolismo , Osteoartrite/metabolismo , Ratos , Ratos Wistar , Ubiquinona/análogos & derivados
3.
PLoS One ; 16(12): e0259130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855756

RESUMO

The green-lipped mussel (GLM) contains novel omega-3 polyunsaturated fatty acids, which exhibit anti-inflammatory and joint-protecting properties. Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage; oxidative stress plays a role in the pathogenesis of OA. The objectives of this study were to investigate the in vivo effects of the GLM on pain severity and cartilage degeneration using an experimental rat OA model, and to explore the mode of action of GLM. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) into the knee. Oral GLM was initiated on the day after 3dyas of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed both macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-1ß (IL-1ß), IL-6, nitrotyrosine, and inducible nitric oxide synthase (iNOS) in knee joints. Also, the GLM was applied to OA chondrocyte, and the expression on catabolic marker and necroptosis factor were evaluated by real-time polymerase chain reaction. Administration of the GLM improved pain levels by preventing cartilage damage and inflammation. GLM significantly attenuated the expression levels of mRNAs encoding matrix metalloproteinase-3 (MMP-3), MMP-13, and ADAMTS5 in IL-1ß-stimulated human OA chondrocytes. GLM decreased the expression levels of the necroptosis mediators RIPK1, RIPK3, and the mixed lineage kinase domain-like protein (MLKL) in IL-1ß-stimulated human OA chondrocytes. Thus, GLM reduced pain and cartilage degeneration in rats with experimentally induced OA. The chondroprotective properties of GLM included suppression of oxidative damage and inhibition of catabolic factors implicated in the pathogenesis of OA cartilage damage. We suggest that GLM may usefully treat human OA.


Assuntos
Anti-Inflamatórios/farmacologia , Bivalves/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Masculino , Ratos , Ratos Wistar
4.
Cells ; 10(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946919

RESUMO

Osteoarthritis (OA) is the most common form of arthritis and age-related degenerative joint disorder, which adversely affects quality of life and causes disability. However, the pathogenesis of OA remains unclear. This study was performed to examine the effects of Lactobacillus rhamnosus in OA progression. OA was induced in 6-week-old male Wistar rats by monosodium iodoacetate (MIA) injection, and the effects of oral administration of L. rhamnosus were examined in this OA rat model. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. The small intestines were isolated from OA rats, and the intestinal structure and inflammation were measured. Protein expression in the dorsal root ganglion was analyzed by immunohistochemistry. The effects of L. rhamnosus on mRNA and protein expression in chondrocytes stimulated with interleukin (IL)-1ß and lipopolysaccharide (LPS) were analyzed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Pain severity was decreased in L. rhamnosus-treated MIA-induced OA rats. The levels of expression of MCP-1, a potential inflammatory cytokine, and its receptor, CCR2, were decreased, and GABA and PPAR-γ expression were increased in L. rhamnosus-treated OA rats. The inflammation, as determined by IL-1ß, and cartilage destruction, as determined by MMP3, were also significantly decreased by L. rhamnosus in OA rats. Additionally, intestinal damage and inflammation were improved by L. rhamnosus. In human OA chondrocytes, TIMP1, TIMP3, SOX9, and COL2A1 which are tissue inhibitors of MMP, and IL-10, an anti-inflammatory cytokine, were increased by L. rhamnosus. L. rhamnosus treatment led to decreased pain severity and cartilage destruction in a rat model of OA. Intestinal damage and inflammation were also decreased by L. rhamnosus treatment. Our findings suggested the therapeutic potential of L. rhamnosus in OA.


Assuntos
Terapia Biológica/métodos , Lacticaseibacillus rhamnosus/patogenicidade , Osteoartrite/terapia , Manejo da Dor/métodos , Probióticos , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Condrócitos/metabolismo , Colágeno/metabolismo , Gânglios Espinais/metabolismo , Humanos , Interleucina-1beta/metabolismo , Articulações/metabolismo , Articulações/patologia , Osteoartrite/microbiologia , PPAR gama/metabolismo , Ratos , Ratos Wistar , Receptores CCR2/metabolismo , Fatores de Transcrição SOX9/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo
5.
Immunol Lett ; 228: 112-121, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137380

RESUMO

Disease-modifying osteoarthritis (OA) therapy is not yet available. Several adjuvant therapies have demonstrated promising results in the treatment of OA. The present study aimed to investigate the therapeutic effects and underlying mechanisms of a combination of Lactobacillus acidophilus, vitamin B, and curcumin in the treatment of OA. Monosodium iodoacetate (MIA)-induced arthritis of the knee joint in rat was used as an animal model of human OA. The combination of L. acidophilus LA-1, vitamin B, and curcumin or a saline solution was given orally. Pain was measured according to the paw withdrawal latency, and paw withdrawal threshold. Cartilage destruction was analyzed using histomorphological techniques and the Mankin scoring system. Protein expression in the joint was examined using immunohistochemistry. The effects of the combination of L. acidophilus LA-1, vitamin B, and curcumin on mRNA levels in chondrocytes stimulated with interleukin (IL)-1ß were analyzed using real-time polymerase chain reaction. The combination of L. acidophilus, vitamin B, and curcumin effectively downregulated Th17 cells and the related cytokine IL-17, thereby maintained the Treg population, and increased the expression of the Treg-related cytokine IL-10 in human peripheral blood mononuclear cells. The OA animal model exhibited reduced pain and preservation of cartilage in response to the combination treatment. The expression levels of pro-inflammatory cytokines and the catabolic, matrix metalloproteinase-13 (MMP-13), were decreased, whereas the expression of the anabolic tissue inhibitors of metalloproteinases (TIMPs) were upregulated in response to the drug combination. The combination of L. acidophilus, vitamin B, and curcumin was beneficial in OA treatment, controlling the inflammatory response via regulation of the Th17/Treg population and reducing the expression of pro-inflammatory cytokines in human peripheral blood mononuclear cells. The combination treatment also preserved cartilage, suppressed osteoclastogenesis, and regulated the anabolic/catabolic imbalance. These findings indicate the therapeutic potential of combination use of L. acidophilus, vitamin B, and curcumin in patients with OA.


Assuntos
Antirreumáticos/farmacologia , Curcumina/farmacologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Articulações/efeitos dos fármacos , Lactobacillus acidophilus/fisiologia , Osteoartrite/tratamento farmacológico , Probióticos/farmacologia , Complexo Vitamínico B/farmacologia , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Articulações/imunologia , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Osteoartrite/imunologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteogênese/efeitos dos fármacos , Ratos Wistar , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
6.
PLoS One ; 15(11): e0241080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156836

RESUMO

Coenzyme Q10 (CoQ10), also known as ubiquinone, is a fat-soluble antioxidant. Although CoQ10 has not been approved as medication by the Food and Drug Administration, it is widely used in dietary supplements. Some studies have shown that CoQ10 has anti-inflammatory effects on various autoimmune disorders. In this study, we investigated the anti-inflammatory effects of liposome/gold hybrid nanoparticles encoded with CoQ10 (LGNP-CoQ10). Both CoQ10 and LGNP-CoQ10 were administered orally to mice with collagen-induced arthritis (CIA) for 10 weeks. The inflammation pathology of joint tissues of CIA mice was then analyzed using hematoxylin and eosin and Safranin O staining, as well as immunohistochemistry analysis. We obtained immunofluorescence staining images of spleen tissues using confocal microscopy. We found that pro-inflammatory cytokines were significantly decreased in LGNP-CoQ10 injected mice. Th17 cell and phosphorylated STAT3-expressed cell populations were also decreased in LGNP-CoQ10 injected mice. When human peripheral blood mononuclear cells (PBMCs) were treated with CoQ10 and LGNP-CoQ10, the IL-17 expression of PBMCs in the LGNP-CoQ10-treated group was significantly reduced. Together, these results suggest that LGNP-CoQ10 has therapeutic potential for the treatment of rheumatoid arthritis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Ouro/administração & dosagem , Lipossomos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Fator de Transcrição STAT3/metabolismo , Células Th17/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-17/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Ubiquinona/administração & dosagem
7.
J Med Food ; 21(4): 364-371, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29346012

RESUMO

Osteoarthritis (OA), a degenerative disorder, induces pain, joint inflammation, and destruction of the articular cartilage matrix. Probiotic complex, rosavin, and zinc have been used as dietary supplements that exhibit anti-inflammatory and antioxidant properties. However, there is no evidence demonstrating a synergic effect in OA. This study aims to determine whether combination with probiotic complex, rosavin, and zinc decreases progression of monosodium iodoacetate (MIA)-induced OA rat model. The combination improved pain levels by preventing cartilage damage. The expression of proinflammatory cytokines and catabolic factors was reduced by the combination within the joint tissue. However, the combination increased anti-inflammatory cytokines as well as the anabolic factor production. The gene level of catabolic factors was decreased with treatment of the combination in chondrocytes isolated from OA patients. These results suggest that the combination can improve MIA development through the inhibition of proinflammatory cytokines and cartilage destruction, thus playing a key role as a therapeutic candidate for OA treatment.


Assuntos
Artrite Experimental/tratamento farmacológico , Cartilagem Articular/efeitos dos fármacos , Citocinas/metabolismo , Dissacarídeos/uso terapêutico , Osteoartrite/tratamento farmacológico , Probióticos/uso terapêutico , Zinco/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/complicações , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem Articular/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Suplementos Nutricionais , Dissacarídeos/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Ácido Iodoacético , Articulações/efeitos dos fármacos , Articulações/metabolismo , Masculino , Osteoartrite/complicações , Osteoartrite/metabolismo , Osteoartrite/patologia , Dor/tratamento farmacológico , Dor/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Rhodiola/química , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA