Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer Genomics Proteomics ; 20(1): 88-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36581346

RESUMO

BACKGROUND/AIM: Breast cancer is one of the most common cancers in women all over the world and new treatment options are urgent. ER stress in cancer cells results in apoptotic cell death, and it is being proposed as a new therapeutic target. SH003, a newly developed herbal medicine, has been reported to have anti-cancer effects. However, its molecular mechanism is not yet clearly defined. MATERIALS AND METHODS: Microarray was performed to check the differential gene expression patterns in various breast cancer cell lines. Cell viability was measured by MTT assays to detect cytotoxic effects. Annexin V-FITC and 7AAD staining, TUNEL assay and DCF-DA staining were analyzed by flow cytometry to evaluate apoptosis and ROS levels, respectively. Protein expression was examined in SH003-breast cancer cells using immunoblotting assays. The expression of C/EBP Homologous Protein (CHOP) mRNA was measured by real-time PCR. The effects of CHOP by SH003 treatment were investigated using transfection method. RESULTS: Herein, we investigated the molecular mechanisms through which SH003 causes apoptosis of human breast cancer cells. Both cell viability and apoptosis assays confirmed the SH003-induced apoptosis of breast cancer cells. Meanwhile, SH003 altered the expression patterns of several genes in a variety of breast cancer cell lines. More specifically, it upregulated gene sets including the response to unfolded proteins, independently of the breast cancer cell subtype. In addition, SH003-induced apoptosis was due to an increase in ROS production and an activation of the ER stress-signaling pathway. Moreover, CHOP gene silencing blocked SH003-induced apoptosis. CONCLUSION: SH003 causes apoptosis of breast cancer cells by upregulating ROS production and activating the ER stress-mediated pathway. Thus, our findings suggest that SH003 can be a potential therapeutic agent for breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Inibidores da Angiogênese/farmacologia
2.
Biomed Res Int ; 2022: 3647900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572726

RESUMO

Although many anticancer drugs have been developed for triple-negative breast cancer (TNBC) treatment, there are no obvious therapies. Moreover, the combination of epidermal growth factor receptor- (EGFR-) targeted therapeutics and classical chemotherapeutic drugs has been assessed in clinical trials for TNBC treatment, but those are not yet approved. Our serial studies for newly developed herbal medicine named SH003 provide evidence of its broad effectiveness in various cancers, especially on TNBC. The current study demonstrates a synergic effect of combinatorial treatment of SH003 and docetaxel (DTX) by targeting EGFR activation. The combinatorial treatment reduced the viability of both BT-20 and MDA-MB-231 TNBC cells, displaying the synergism. The combination of SH003 and DTX also caused the synergistic effect on apoptosis. Mechanistically, the cotreatment of SH003 and DTX inhibited phosphorylation of EGFR and AKT in both BT-20 and MDA-MB-231 cells. Moreover, our xenograft mouse tumor growth assays showed the inhibitory effect of the combinatorial treatment with no effect on body weight. Our immunohistochemistry confirmed its inhibition of EGFR phosphorylation in vivo. Collectively, combinatorial treatment of SH003 and DTX has a synergistic anticancer effect at a relatively low concentration by targeting EGFR in TNBC, indicating safety and efficacy of SH003 as adjuvant combination therapy with docetaxel. Thus, it is worth testing the combinatorial effect in clinics for treating TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Inibidores da Angiogênese/uso terapêutico , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Receptores ErbB , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
3.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445110

RESUMO

Epidermal growth factor receptor (EGFR) is overexpressed in lung cancer patients. Despite treatment with various EGFR tyrosine kinase inhibitors, recurrence and metastasis of lung cancer are inevitable. Docetaxel (DTX) is an effective conventional drug that is used to treat various cancers. Several researchers have studied the use of traditional herbal medicine in combination with docetaxel, to improve lung cancer treatment. SH003, a novel herbal mixture, exerts anticancer effects in different cancer cell types. Here, we aimed to investigate the apoptotic and anticancer effects of SH003 in combination with DTX, in human non-small-cell lung cancer (NSCLC). SH003, with DTX, induced apoptotic cell death, with increased expression of cleaved caspases and cleaved poly (ADP-ribose) polymerase in NSCLC cells. Moreover, SH003 and DTX induced the apoptosis of H460 cells via the suppression of the EGFR and signal transducer and activator of transcription 3 (STAT3) signaling pathways. In H460 tumor xenograft models, the administration of SH003 or docetaxel alone diminished tumor growth, and their combination effectively killed cancer cells, with increased expression of apoptotic markers and decreased expression of p-EGFR and p-STAT3. Collectively, the combination of SH003 and DTX may be a novel anticancer strategy to overcome the challenges that are associated with conventional lung cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Docetaxel/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células A549 , Angelica , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Astrágalo , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Trichosanthes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Nutrients ; 13(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809267

RESUMO

Although the anti-obesity effect of Korean red ginseng (Panax ginseng Meyer) has been revealed, its underlying mechanisms are not clearly understood. Here, we demonstrate an involvement of gut microbiome in the inhibitory effect of Korean red ginseng on high-fat-diet (HFD)-induced mouse obesity, and further provides information on the effects of saponin-containing red ginseng extract (SGE) and saponin-depleted red ginseng extract (GE). Mice were fed with either SGE or GE every third day for one month, and their food intakes, fat weights, plasma glucose, and insulin and leptin levels were measured. Immunofluorescence assays were conducted to measure pancreatic islet size. Stools from the mice were subjected to metagenomic analysis. Both SGE and GE attenuated HFD-induced gain of body weight, reducing HFD-induced increase of food intakes and fat weights. They also reduced HFD-increased plasma glucose, insulin, and leptin levels, decreased both fasting and postprandial glucose concentrations, and improved both insulin resistance and glucose intolerance. Immunofluorescence assays revealed that they blocked HFD-induced increase of pancreatic islet size. Our pyrosequencing of the 16S rRNA gene V3 region from stools revealed that both SGE and GE modulated HFD-altered composition of gut microbiota. Therefore, we conclude that Korean red ginseng inhibits HFD-induced obesity and diabetes by altering gut microbiome.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Obesidade/tratamento farmacológico , Panax , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Animais , Glicemia/análise , Imunofluorescência , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Insulina/sangue , Leptina/sangue , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Obesidade/patologia , Pâncreas/patologia , RNA Ribossômico 16S/genética
5.
Anticancer Res ; 40(8): 4529-4535, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727783

RESUMO

BACKGROUND/AIM: Although ginseng seed oil (GSO) appears to have various roles in the body, its anti-cancer effect has not been investigated. Tamoxifen is widely used to treat estrogen receptor-positive (ER+) breast cancer but shows adverse effects with drug resistance. This study investigated the effect of GSO in ER+ breast cancer cell growth. MATERIALS AND METHODS: Cell viability assays, western blots and Annexin V staining were conducted to examine cell viability and apoptosis. The synergistic effect of tamoxifen in combination with GSO or oleic acid (OA) was determined. RESULTS: GSO and OA caused apoptosis of MCF-7 ER+ breast cancer cells and had synergistic effects with tamoxifen in inhibiting tamoxifen-resistant MCF-7 (MCF-7TAMR) ER+ breast cancer cell growth. CONCLUSION: GSO may block ER+ breast cancer recurrence in combination with tamoxifen.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Oleico/farmacologia , Panax/química , Óleos de Plantas/farmacologia , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Óleos de Plantas/química , Sementes/química
6.
Planta Med ; 85(16): 1242-1252, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31597167

RESUMO

Numerous chemically synthesized compounds are widely used in oral hygiene products. However, due to their potential risk, there is a need to improve the safety and quality of dental care by seeking alternative control agents such as those naturally found in plant materials. Here we assessed antibacterial potentials of extracts from 100 species of Korean native plants against Streptococcus mutans on cariogenesis. Among those, extracts from five plants (Arctii Fructus, Caryopteris incana, Aralia continentalis, Symplocarpus renifolius, and Lamium amplexicaule) showed a growth inhibition of S. mutans. The five extracts were further individually evaluated for their minimal inhibitory concentration and minimal bactericidal concentration. Interestingly, a synergistic antibacterial activity was observed with the combination of sodium fluoride and the plant extracts. To determine the anti-biofilm activity of plant extracts, S. mutans was treated with increasing concentrations of the extracts in the range from 1250 to 3750 µg/mL. When S. mutans was grown in the defined biofilm medium containing the individual extracts of 47 species, the biofilm amount markedly decreased compared to that of a negative control. Notably, the extract of S. renifolius significantly downregulated the gtf and spaP genes for synthesis of glucan and adhesive proteins in S. mutans, and L. amplexicaule decreased the expression of gtfD gene. Therefore, these results demonstrate that the five plant extracts modulate survival and pathogenesis of S. mutans by growth inhibition and downregulation of the gene(s) implicated in biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/química , Produtos Biológicos/química , República da Coreia , Streptococcus mutans/crescimento & desenvolvimento
7.
Mol Med Rep ; 17(2): 2665-2672, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207134

RESUMO

Chemotherapy frequently causes anorexia in cancer patients, which has been associated with poor disease prognosis. Several therapeutic strategies for the treatment of chemotherapy­induced anorexia are available; however, their adverse effects limit their clinical use. Herbal medicines have a long history of use for the treatment of various diseases, including cancer, and recent research has demonstrated their safety and efficacy. In the present study, combinations of herbal medicines were designed based on traditional Korean medicine, and their effects were investigated on chemotherapy­induced anorexia. Herbal mixtures were extracted, composed of Atractylodes japonica, Angelica gigas, Astragalus membranaceus, Lonicera japonica Thunb., Taraxacum platycarpum H. Dahlstedt and Prunella vulgaris var. asiatica (Nakai) Hara. The mixtures were termed LCBP­Anocure­16001­3 (LA16001, LA16002, LA16003). A cisplatin­induced anorexic mouse model was used to evaluate the putative effects of the extracts on chemotherapy­induced anorexia. Treatment with LA16001 was revealed to prevent body weight loss, and all three extracts were demonstrated to improve food intake. When the molecular mechanisms underlying the orexigenic effects of LA16001 were investigated, altered expression levels of ghrelin, leptin and interleukin­6 were revealed. Furthermore, LA16001 was reported to induce phosphorylation of Janus kinase 1 and signal transducer and activator of transcription 3. In addition, LA16001 administration increased the number of white blood cells and neutrophils. These results suggested that the herbal formula LA16001 may be able to prevent chemotherapy­induced anorexia and may have potential as a novel therapeutic strategy for the adjuvant treatment of patients with cancer.


Assuntos
Anorexia/etiologia , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Extratos Vegetais/farmacologia , Animais , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Apetite/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Medicina Herbária , Hormônios/metabolismo , Humanos , Janus Quinase 1/metabolismo , Masculino , Camundongos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Int J Mol Med ; 41(1): 373-380, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115450

RESUMO

Tumor necrosis factor­α­mediated (TNF­α) epithelial­mesenchymal transition (EMT) is associated with distant metastasis in patients with colorectal cancer with poor prognosis. Although traditional herbal medicines have long been used to treat colorectal cancer, the incidence and mortality in patients with colorectal cancer has continued to increase. Danggui­Sayuk­Ga­Osuyu­Saenggang­Tang (DSGOST) has long been used for treatment of chills, while few studies have reported its anticancer effect. This study aimed to demonstrate the inhibitory effect of DSGOST on TNF­α­mediated invasion and migration of colorectal cancer HCT116 cell lines. MTT was used to measure cell viability. Wound healing and Τranswell invasion assay were used to detect migration and invasion of cells, respectively. The intracellular localization of proteins of interest was assessed by immunocytochemistry. Western blotting was performed to determine the expression level of various proteins. A non­toxic dose of DSGOST (50 µg/ml) on HCT116 cells was determined by MTT assay. Furthermore, DSGOST prevented the TNF­α­induced invasive phenotype in HCT116 cells. DSGOST inhibition of the invasive phenotype was also associated with increased expression of EMT markers. Furthermore, DSGOST treatment blocked TNF­α­induced migration and invasion of HCT116 cells. In addition, DSGOST treatment inhibited TNF­α­mediated nuclear translocation of Snail. DSGOST treatment also downregulated TNF­α­induced phosphorylation of AKT and glycogen synthase kinase­3ß. Therefore, the findings of the current study suggest that DSGOST exhibits anti­migration and anti­invasion effects in TNF­α­treated HCT116 human colorectal cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Humanos , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Necrose Tumoral alfa/administração & dosagem
9.
Oncotarget ; 8(51): 88386-88400, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179443

RESUMO

Drug markets revisits herbal medicines, as historical usages address their therapeutic efficacies with less adverse effects. Moreover, herbal medicines save both cost and time in development. SH003, a modified version of traditional herbal medicine extracted from Astragalus membranaceus (Am), Angelica gigas (Ag), and Trichosanthes Kirilowii Maximowicz (Tk) with 1:1:1 ratio (w/w) has been revealed to inhibit tumor growth and metastasis on highly metastatic breast cancer cells, both in vivo and in vitro with no toxicity. Meanwhile, autophagy is imperative for maintenance cellular homeostasis, thereby playing critical roles in cancer progression. Inhibition of autophagy by pharmacological agents induces apoptotic cell death in cancer cells, resulting in cancer treatment. In this study, we demonstrate that SH003-induced autophagy via inhibiting STAT3 and mTOR results in an induction of lysosomal p62/SQSTM1 accumulation-mediated reactive oxygen species (ROS) generation and attenuates tumor growth. SH003 induced autophagosome and autolysosome formation by inhibiting activation of STAT3- and mTOR-mediated signaling pathways. However, SH003 blocked autophagy-mediated p62/SQSTM1 degradation through reducing of lysosomal proteases, Cathepsins, resulting in accumulation of p62/SQSTM1 in the lysosome. The accumulation of p62/SQSTM1 caused the increase of ROS, which resulted in the induction of apoptotic cell death. Therefore, we conclude that SH003 suppresses breast cancer growth by inducing autophagy. In addition, SH003-induced p62/SQSTM1 could function as an important mediator for ROS generation-dependent cell death suggesting that SH003 may be useful for treating breast cancer.

10.
Mol Med Rep ; 15(5): 3143-3146, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28350093

RESUMO

The herbal extract Angelica gigas (AG) has been applied as a vasodilating agent for patients suffering from vascular diseases for many years; however, the underlying mechanism has not been fully elucidated. The present study hypothesized that the anti­vasoconstrictive effect of AG may be effective in the treatment of abnormal cold­mediated vasospasms that occur in Raynaud's phenomenon (RP). The effect of AG on the activity of ras homolog gene family member A (RhoA) was investigated in cold­exposed vascular cells. Vascular cells were pretreated to AG, followed by a warm (37˚C) or cold (25˚C) incubation for 30 min and investigated with western blotting, ELISA and confocal microscopy. Cold treatment induced the activation of RhoA in pericytes and vascular endothelial cells, however this was reduced by treatment with AG. Furthermore, AG treatment reduced the endothelin­1 (ET­1)­mediated RhoA activation in pericytes; however, cold­induced ET­1 production by vascular endothelial cells was not affected by treatment with AG. In addition, AG treatment suppressed the formation of stress fibers and focal adhesion complexes, and the cold­induced phosphorylation of focal adhesion kinase, proto­oncogene tyrosine­protein kinase Src and extracellular signal­related kinase. Therefore, AG treatment demonstrated an ability to reduce cold­induced RhoA activation in pericytes and vascular endothelial cells, and attenuated ET­1­mediated RhoA activation in pericytes. In conclusion, the present study indicated that AG may be useful for the treatment of RP.


Assuntos
Angelica/química , Extratos Vegetais/química , Proteína rhoA de Ligação ao GTP/metabolismo , Angelica/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Endotelina-1/análise , Endotelina-1/metabolismo , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Confocal , Pericitos/citologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Temperatura , Vasodilatadores/química , Vasodilatadores/isolamento & purificação , Vasodilatadores/farmacologia , Quinases da Família src/metabolismo
11.
Mol Cell Biochem ; 426(1-2): 1-8, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27854072

RESUMO

Paclitaxel is an anti-cancer drug for treating cancer, but paclitaxel resistance is reported in cancer cells. Multidrug resistance (MDR) is related with the epithelial-to-mesenchymal transition (EMT) mechanism, which plays a key role in cancer metastasis. Moreover, EMT mechanism is connected to tamoxifen resistance in breast cancer cells. Consequently, oncologists are interested in finding new MDR1 inhibitors originating from herbal medicines to have less side-effect. Here, we investigated an inhibition effect of SH003 on MDR1 activity in paclitaxel-resistant MCF-7/PAX breast cancer cells. Our results showed that paclitaxel did not inhibit a proliferation in paclitaxel-resistant MCF-7 breast cancer cells. Paclitaxel-resistant MCF-7 cells showed an increase of MDR1 activity, which was confirmed by measuring an amount of accumulated rhodamine 123 in the cells. Also, qRT-PCR and Western blot assays confirmed that paclitaxel-resistant MCF-7 cells exhibited high MDR1 expression level. Furthermore, paclitaxel-resistant MCF-7 cells showed mesenchymal morphology with alterations of EMT markers, and acquired tamoxifen resistance with a decrease of ERα expression. We also found that a combinatorial treatment of SH003 and paclitaxel in paclitaxel-resistant MCF-7 cells caused apoptosis in synergistic manner, which was due to SH003 inhibition of MDR1 expression. Therefore, SH003 could be a potential agent for overcoming MDR in drug-resistant cancer cells.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias , Paclitaxel/farmacologia , Extratos Vegetais/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Angelica , Astrágalo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Trichosanthes
12.
BMC Complement Altern Med ; 16(1): 507, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927199

RESUMO

BACKGROUND: Herbal medicines have been used in cancer treatment, with many exhibiting favorable side effect and toxicity profiles compared with conventional chemotherapeutic agents. SH003 is a novel extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes Kirilowii Maximowicz combined at a 1:1:1 ratio that impairs the growth of breast cancer cells. This study investigates anti-cancer effects of SH003 in prostate cancer cells. METHODS: SH003 extract in 30% ethanol was used to treat the prostate cancer cell lines DU145, LNCaP, and PC-3. Cell viability was determined by MTT and BrdU incorporation assays. Next, apoptotic cell death was determined by Annexin V and 7-AAD double staining methods. Western blotting was conducted to measure protein expression levels of components of cell death and signaling pathways. Intracellular reactive oxygen species (ROS) levels were measured using H2DCF-DA. Plasmid-mediated ERK2 overexpression in DU145 cells was used to examine the effect of rescuing ERK2 function. Results were analyzed using the Student's t-test and P-values < 0.05 were considered to indicate statistically-significant differences. RESULTS: Our data demonstrate that SH003 induced apoptosis in DU145 prostate cancer cells by inhibiting ERK signaling. SH003 induced apoptosis of prostate cancer cells in dose-dependent manner, which was independent of androgen dependency. SH003 also increased intracellular ROS levels but this is not associated with its pro-apoptotic effects. SH003 inhibited phosphorylation of Ras/Raf1/MEK/ERK/p90RSK in androgen-independent DU145 cells, but not androgen-dependent LNCaP and PC-3 cells. Moreover, ERK2 overexpression rescued SH003-induced apoptosis in DU145 cells. CONCLUSIONS: SH003 induces apoptotic cell death of DU145 prostate cancer cells by inhibiting ERK2-mediated signaling.


Assuntos
Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Angelica , Astrágalo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Extratos Vegetais/farmacologia , Trichosanthes
13.
Mol Med Rep ; 14(5): 4723-4728, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748811

RESUMO

Danggui-Sayuk-Ga-Osuyu-Senggang-Tang (DSGOST), one of the traditional Chinese medicines, has long been prescribed for patients suffering from Raynaud phenomenon (RP) in Northeast Asian countries, including China, Japan and Korea. Although a previous in vitro study from our laboratory revealed that DSGOST prevents cold (25˚C)­induced RhoA activation and endothelin­1 (ET­1) production in endothelial cells (ECs), the mechanisms by which DSGOST is able to alleviate the symptoms of RP have yet to be fully elucidated. The present study aimed to demonstrate that DSGOST regulates RhoA­mediated pathways in cold­exposed pericytes. In pericytes, DSGOST amplified cold­induced RhoA activation, while markedly reducing ET­1­induced RhoA activation. Additionally, DSGOST­mediated regulation of RhoA was closely associated with Rho­associated, coiled­coil­containing protein kinase 1 (ROCK1)/testis­specific kinase 1 (TESK1)/PDXP, but not with LIM domain kinase 1/2 (LIMK1/2), cofilin and myosin light chain (MLC). Thus, DSGOST activation of RhoA/ROCK1/TESK1/PDXP in cold­exposed pericytes appeared to be crucial for treating vessel contraction. In addition, the DSGOST effect on the RhoA­mediated pathway in cold­induced human umbilical vein endothelial cells or human dermal microvascular endothelial cells was similar to that in ET­1­treated pericytes, but not in cold­induced pericytes. The results of the present study further confirmed that DSGOST inhibits cold­induced contraction of the mouse tail vein in vivo. Furthermore, DSGOST treatment reduced cold­induced expression of the α2c­adrenergic receptor in mouse tail vessels. Therefore, the data in the present study suggest that DSGOST may be useful for the treatment of RP­like disease.


Assuntos
Temperatura Baixa , Medicamentos de Ervas Chinesas/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Endotelina-1/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Phytother Res ; 30(12): 2020-2026, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27605402

RESUMO

Angelica gigas Nakai (AGN, Korean Dang-gui) is traditionally used for the treatment of various diseases including cancer. Here, we investigated multidrug-resistant phenotype-reversal activities of AGN and its compounds (decursin, ferulic acid, and nodakenin) in doxorubicin-resistant NCI/ADR-RES ovarian cancer cells. Our results showed that a combination of doxorubicin with either AGN or decursin inhibited a proliferation of NCI/ADR-RES cells. These combinations increased the number of cells at sub-G1 phase when cells were stained with Annexin V-fluorescein isothiocyanate. We also found that these combinations activated caspase-9, caspase-8, and caspase-3 and increased cleaved PARP level. Moreover, an inhibition of P-glycoprotein expression by either AGN or decursin resulted in a reduction of its activity in NCI/ADR-RES cells. Therefore, our data demonstrate that decursin in AGN inhibits doxorubicin-resistant ovarian cancer cell proliferation and induces apoptosis in the presence of doxorubicin via blocking P-glycoprotein expression. Therefore, AGN would be a potentially novel treatment option for multidrug-resistant tumors by sensitizing to anticancer agents. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Angelica/química , Benzopiranos/química , Butiratos/química , Doxorrubicina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Apoptose , Proliferação de Células , Feminino , Humanos
15.
Mol Med Rep ; 14(4): 3955-60, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27599791

RESUMO

Triple-negative breast cancer (TNBC) is a breast cancer subtype that has an aggressive phenotype, is highly metastatic, has limited treatment options and is associated with a poor prognosis. In addition, metastatic TNBC has no preferred standard chemotherapy due to resistance to anthracyclines and taxanes. The present study demonstrated that a herbal extract, SH003, reduced cell viability and induced apoptosis in TNBC without cell cytotoxicity. Cell viability was examined using trypan blue exclusion and colony formation assays, which revealed a decrease in the cell viability. Additionally, apoptosis was determined using flow cytometry and a sub­G1 assay, which revealed an increase in the proportion of cells in the sub­G1 phase. The present study investigated the anticancer effect of SH003 in the Hs578T, MDA­MB­231 and ZR­751 TNBC cell lines, and in the MCF7 and T47D non­TNBC cell lines. Western blot analysis revealed that the expression levels of poly­ADP­ribose polymerase (PARP) cleavage protein in cells treated with SH003 were increased dose­dependent manner, indicating that SH003 induced apoptosis via a caspase­dependent pathway. Pre­treatment with the caspase inhibitor Z­VAD reduced SH003­induced apoptosis was examined using trypan blue exclusion. Moreover, SH003 treatment enhanced the p73 levels in MDA­MB­231 cells but not in MCF7 cells. Transfection of p73 small interfering RNA (siRNA) in MDA­MB0231 cells revealed that the apoptotic cell death induced by SH003 was significantly impaired in comparison with scramble siRNA transfected MDA­MB­231 cells. This was examined using trypan blue exclusion and flow cytometry analysis (sub­G1). In addition, SH003 and paclitaxel exhibited synergistic anticancer effects on TNBC cells. The results indicate that SH003 exerts its anticancer effect via p73 protein induction and exhibits synergistic anticancer effects when combined with paclitaxel.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Tumoral p73/metabolismo , Angelica , Astrágalo , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Paclitaxel/farmacologia , Trichosanthes , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
16.
Phytother Res ; 30(11): 1817-1823, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27476488

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive, resulting in poor prognosis. Chemotherapy of TNBC relies on anti-cancer agents with strong cytotoxicity, but it causes several side effects with recurrence. While combinational approaches of chemotherapeutics have been highlighted as a new treatment strategy for TNBC to reduce side effects, combinations of anti-cancer agents with herbal medicines have not been reported. We recently reported that newly modified traditional Chinese medicine named SH003 inhibited TNBC growth. Considering a combinational strategy for TNBC treatment, we further studied synergistic effects of SH003 with various anti-cancer drugs in TNBC treatment. Here, we demonstrate that SH003 shows a synergistic effect with doxorubicin on TNBC treatment. Our in vitro cell viability assays revealed that SH003 and doxorubicin showed a synergistic effect in the well-defined TNBC cell line, MDA-MB-231. Moreover, we found that the combinational treatment caused Caspase-dependent apoptotic cell death. Our in vivo mouse xenograft tumor growth assays confirmed that combinational treatment of SH003 with doxorubicin repressed MDA-MB-231 tumor growth with no weight loss. Therefore, we conclude that the combinational treatment of SH003 with doxorubicin shows the synergism in TNBC treatment, and suggest that SH003 can be used together with conventional anti-cancer drugs in chemotherapeutic approaches. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Extratos Vegetais/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Angelica , Animais , Antineoplásicos/farmacologia , Apoptose , Astrágalo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/farmacologia , Trichosanthes , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 7(22): 32969-79, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27105528

RESUMO

Tumor angiogenesis is a key feature of cancer progression, because a tumor requires abundant oxygen and nutrition to grow. Here, we demonstrate that SH003, a mixed herbal extract containing Astragalus membranaceus (Am), Angelica gigas (Ag) and Trichosanthes Kirilowii Maximowicz (Tk), represses VEGF-induced tumor angiogenesis both in vitro and in vivo. SH003 inhibited VEGF-induced migration, invasion and tube formation in human umbilical vein endothelial cells (HUVEC) with no effect on the proliferation. SH003 reduced CD31-positive vessel numbers in tumor tissues and retarded tumor growth in our xenograft mouse tumor model, while SH003 did not affect pancreatic tumor cell viability. Consistently, SH003 inhibited VEGF-stimulated vascular permeability in ears and back skins. Moreover, SH003 inhibited VEGF-induced VEGFR2-dependent signaling by blocking VEGF binding to VEGFR2. Therefore, our data conclude that SH003 represses tumor angiogenesis by inhibiting VEGF-induced VEGFR2 activation, and suggest that SH003 may be useful for treating cancer.


Assuntos
Neovascularização Patológica/tratamento farmacológico , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Angelica , Animais , Astrágalo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/patologia , Distribuição Aleatória , Transdução de Sinais , Trichosanthes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
BMC Complement Altern Med ; 16: 122, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121110

RESUMO

BACKGROUND: Rhus verniciflua Stokes (RVS) belongs to the Anacardiaceae family and traditionally used for cancer treatment. RVS and butein, a major compound of RVS, were known to induce apoptosis via AKT inhibition in cancer cells. Thus, in this study, we investigated the effect of RVS and its derivative compounds (fisetin, quercetin, butein) on cell death in SKOV-3/PAX cells. METHODS: The 80 % ethanol extract of RVS and its derivative compounds (fisetin, quercetin, butein) were prepared. The cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Apoptotic cells were detected by staining with propidium iodide (PI) and Annexin V-fluorescein isothiocyanate/7-aminoactinomycin D (Annexin V-FITC/7-AAD). The expression level of intracellular signaling related-proteins in apoptosis and growth were measured by western blot assay. RESULTS: We found that RVS and butein suppressed the growth of SKOV-3/PAX cells in a dose-dependent manner. We also found that RVS and butein produced the cleavage of caspase-9, -8, -3, and PARP. Similarly, sub-G1 phase and Annexin V-FITC positive cells were increased by RVS and butein. Moreover, RVS and butein significantly reduced AKT phosphorylation in SKOV-3/PAX cells. PI3K inhibitor LY294002 caused PARP cleavage supporting our finding. CONCLUSION: Our data clearly indicate that RVS and butein induce apoptosis of SKOV-3/PAX cells through inhibition of AKT activation. RVS and butein could be useful compounds for the treatment for paclitaxel resistant-ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rhus/química , Linhagem Celular Tumoral , Chalconas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Fosforilação
19.
Mol Med Rep ; 13(5): 4065-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26986492

RESUMO

Cancer cells can acquire an anticancer, drug-resistant phenotype following chemotherapy, which is tightly linked to cancer malignancy and patient survival rates. Therefore, the identification of options to treat chemotherapy­resistant cancer cells is an urgent requirement. Rubus coreanus Miquel (RCM) has long been used as a source of food. In addition, it has been reported that RCM has effective functions against particular diseases, including cancer and inflammation. In the present study, it was demonstrated that RCM extract caused the apoptotic cell death of doxorubicin­resistant NCI/ADR­RES ovarian cancer cells by phosphorylating c­Jun N­terminal kinase (JNK). The RCM­mediated reduction of cell viability showed no synergism with doxorubicin. In addition, ellagic acid and quercetin, which are phytochemicals found in RCM, also caused apoptosis of the NCI/ADR­RES cells. In subsequent investigations of the RCM­altered signaling pathway, RCM extract, ellagic acid and quercetin were found to commonly induce the phosphorylation of JNK and AKT. Additionally, the inhibition of JNK with SP600125 repressed the apoptotic cell death induced by RCM extract, ellagic acid and quercetin, and the inhibition of JNK appeared to switch apoptosis to necrosis. JNK inhibition also reduced the phosphorylation of AKT, which was induced by RCM extract, ellagic acid and quercetin, suggesting that the phosphorylation of JNK is required for AKT phosphorylation in RCM­, ellagic acid­ or quercetin­induced apoptotic cell death. Therefore, the data obtained in the present study led to the conclusion that RCM caused apoptosis of doxorubicin­resistant NCI/ADR-RES ovarian cancer cells via JNK phosphorylation, and suggested that RCM may be effective in the treatment of chemotherapy­resistant cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Extratos Vegetais/farmacologia , Rubus/química , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química
20.
Oncotarget ; 7(16): 21775-85, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26967562

RESUMO

Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Neovascularização Patológica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/genética , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA