Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 92: 153695, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500300

RESUMO

BACKGROUND: Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a significant pathogenic factor in Down syndrome (DS), wherein DYRK1A is overexpressed by 1.5-fold because of trisomy of human chromosome 21. Thus, DYRK1A inhibition is considered a therapeutic strategy to modify the disease. PURPOSE: This study aims to identify a novel DYRK1A inhibitor and validate its therapeutic potential in DS-related pathological conditions. STUDY DESIGN: In order to identify a novel DYRK1A inhibitor, we carried out two-step screening: a structure-based virtual screening of > 300,000 chemical library (first step) and cell-based nuclear factor of activated T-cells (NFAT)-response element (RE) promoter assay (second step). Primary hits were evaluated for their DYRK1A inhibitory activity using in vitro kinase assay and Tau phosphorylation in mammalian cells. Confirmed hit was further evaluated in pathological conditions including DYRK1A-overexpressing fibroblasts, flies, and mice. RESULTS: We identified aristolactam BIII, a natural product derived from herbal plants, as a novel DYRK1A inhibitor. It potently inhibited the kinase activity of DYRK1A in vitro (IC50 = 9.67 nM) and effectively suppressed DYRK1A-mediated hyperphosphorylation of Tau in mammalian cells. Aristolactam BIII rescued the proliferative defects of DYRK1A transgenic (TG) mouse-derived fibroblasts and neurological and phenotypic defects of DS-like Drosophila models. Oral administration of aristolactam BIII acutely suppressed Tau hyperphosphorylation in the brain of DYRK1A TG mice. In the open field test, aristolactam BIII significantly ameliorated the exploratory behavioral deficit of DYRK1A TG mice. CONCLUSION: Our work revealed that aristolactam BIII as a novel DYRK1A inhibitor rescues DS phenotypes in cells and in vivo and suggested its therapeutic potential for the treatment of DYRK1A-related diseases.


Assuntos
Síndrome de Down , Animais , Encéfalo , Síndrome de Down/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Fenótipo , Fosforilação
2.
Phytomedicine ; 65: 153089, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563042

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a rare neuromuscular disease and a leading genetic cause of infant mortality. SMA is caused primarily by the deletion of the survival motor neuron 1 (SMN1) gene, which leaves the duplicate gene SMN2 as the sole source of SMN protein. The splicing defect (exon 7 skipping) of SMN2 leads to an insufficient amount of SMN protein. Therefore, correcting this SMN2 splicing defect is considered to be a promising approach for the treatment of SMA. PURPOSE: This study aimed to identify active compounds and extracts from plant resources to rescue SMA phenotypes through the correction of SMN2 splicing. STUDY DESIGN: Of available plant resources, candidates with SMA-related traditional medicine information were selected for screening using a robust luciferase-based SMN2 splicing reporter. Primary hits were further evaluated for their ability to correct the splicing defect and resultant increase of SMN activity in SMA patient-derived fibroblasts. Confirmed hits were finally tested to determine the beneficial effects on the severe Δ7 SMA mouse. METHODS: SMN2 splicing was analyzed using a luciferase-based SMN2 splicing reporter and subsequent RT-PCR of SMN2 mRNAs. SMA phenotypes were evaluated by the survival, body weights, and righting reflex of Δ7 SMA mice. RESULTS: In a screen of 492 selected plant extracts, we found that Brucea javanica extract and its major constituent Bruceine D have SMN2 splicing-correcting activity. Their ability to correct the splicing defect and the resulting increased SMN activity were further confirmed in SMA fibroblasts. Importantly, both B. javanica and Bruceine D noticeably improved the phenotypic defects, especially muscle function, in SMA mice. Reduced expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributed to the correction of splicing by B. javanica. CONCLUSION: Our work revealed that B. javanica and Bruceine D correct the SMN2 splicing defect and improve the symptoms of SMA in mice. These resources will provide another possibility for development of a plant-derived SMA drug candidate.


Assuntos
Brucea/química , Atrofia Muscular Espinal/tratamento farmacológico , Extratos Vegetais/farmacologia , Quassinas/farmacologia , Processamento Alternativo , Animais , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Éxons , Humanos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Extratos Vegetais/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética
3.
Sci Rep ; 9(1): 9413, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253850

RESUMO

Coxsackievirus B3 (CVB3) is an important human pathogen associated with the development of acute pancreatitis, myocarditis, and type 1 diabetes. Currently, no vaccines or antiviral therapeutics are approved for the prevention and treatment of CVB3 infection. We found that Saururus chinensis Baill extract showed critical antiviral activity against CVB3 infection in vitro. Further, manassantin B inhibited replication of CVB3 and suppressed CVB3 VP1 protein expression in vitro. Additionally, oral administration of manassantin B in mice attenuated CVB3 infection-associated symptoms by reducing systemic production of inflammatory cytokines and chemokines including TNF-α, IL-6, IFN-γ, CCL2, and CXCL-1. We found that the antiviral activity of manassantin B is associated with increased levels of mitochondrial ROS (mROS). Inhibition of mROS generation attenuated the antiviral activity of manassantin B in vitro. Interestingly, we found that manassantin B also induced cytosolic release of mitochondrial DNA based on cytochrome C oxidase DNA levels. We further confirmed that STING and IRF-3 expression and STING and TBK-1 phosphorylation were increased by manassantin B treatment in CVB3-infected cells. Collectively, these results suggest that manassantin B exerts antiviral activity against CVB3 through activation of the STING/TKB-1/IRF3 antiviral pathway and increased production of mROS.


Assuntos
Antivirais/farmacologia , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/efeitos dos fármacos , Furanos/farmacologia , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Chlorocebus aethiops , Infecções por Coxsackievirus/tratamento farmacológico , Citocinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Mitocôndrias/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
4.
Planta Med ; 81(3): 228-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671385

RESUMO

Six known triterpenoid compounds, 3-oxoolean-12-en-27-oic acid (1), gypsogenic acid (2), 3α-hydroxyolean-12-en-27-oic acid (3), 3ß-hydroxyolean-12-en-27-oic acid (4), aceriphyllic acid A (5), and oleanolic acid (6), were isolated from the roots of Aceriphyllum rossii. Their chemical structures were determined by comparison with available (1)H-NMR and (13)C-NMR data on known compounds. All the isolated compounds were evaluated for inhibitory activity against human diacylglycerol acyltransferases 1 and 2. Most of the isolates exhibited a better inhibitory activity against diacylglycerol acyltransferase 2 (IC50: 11.6-44.2 µM) than against diacylglycerol acyltransferase 1 (IC50: 22.7-119.5 µM). In particular, compounds 1 and 5 showed strong inhibition efficacy towards diacylglycerol acyltransferases 1 and 2, and appeared to act competitively against oleoyl-CoA in vitro. The results also indicated that both compounds reduced newly synthesized triacylglycerol in HuTu80 and HepG2 cells. Oral administration of compound 1 significantly reduced postprandial triacylglycerol in mice following an oral lipid challenge. In conclusion, the current study indicates that compound 1 suppresses both de novo triacylglycerol biosynthesis and resynthesis through the inhibition of diacylglycerol acyltransferase activity, and therefore may be a useful agent for treating diseases associated with a high triacylglycerol level.


Assuntos
Diacilglicerol O-Aciltransferase/sangue , Inibidores Enzimáticos/farmacologia , Ácido Oleanólico/farmacologia , Extratos Vegetais/farmacologia , Saxifragaceae/química , Triglicerídeos/sangue , Acil Coenzima A/metabolismo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas
5.
J Med Food ; 16(12): 1108-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24283275

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first committed step in triacylglycerol (TAG) and phospholipid biosynthesis, and has been considered as one of the drug targets for treating hepatic steatosis, insulin resistance, and other metabolic disorders. The aim of this study was to investigate the GPAT inhibitors from natural products and to evaluate their effects. The methanol extract of Aralia cordata roots showed a strong inhibitory effect on the human GPAT1 activity. A further bioactivity-guided approach led to the isolation of ent-pimara-8(14),15-dien-19-oic acid, (PA), one of the major compounds of A. cordata, which suppressed the GPAT1 activity with IC50 value of 60.5 µM. PA markedly reduced de novo lysophosphatidic acid synthesis through inhibition of GPAT activity and therefore significantly decreased synthesis of TAG in the HepG2 cells. These results suggest that PA as well as A. cordata root extract could be beneficial in controlling lipid metabolism.


Assuntos
Aralia/química , Inibidores Enzimáticos/farmacologia , Glicerol-3-Fosfato O-Aciltransferase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Triglicerídeos/biossíntese , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Inibidores Enzimáticos/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Células Hep G2 , Humanos , Lisofosfolipídeos/biossíntese , Extratos Vegetais/química , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA