Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2484: 277-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461458

RESUMO

Meiotic recombination initiates from ~100-200 s of programmed DNA double stranded breaks (DSBs) in plants. Meiotic DSBs can be repaired using homologous chromosomes to generate a crossover . Meiotic crossover is critical for chromosomal segregation and increasing genetic variation. The number of crossovers is limited to one and three per chromosome pair in most plant species. Genetic, epigenetic, and environmental factors control crossover frequency and distribution. Due to the limited number of crossovers it is challenging to measure crossover frequency along chromosomes. We adapted fluorescence-tagged lines (FTLs ) that contain quartet1 mutations and linked transgenes expressing dsRed, eYFP, and eCFP in pollen tetrads into the deep learning-based image analysis tool, DeepTetrad. DeepTetrad enables the measurement of crossover frequency and interference by classifying 12 types of tetrads from three-color FTLs in a high-throughput manner, using conventional microscope instruments and a Linux machine. Here, we provide detailed procedures for preparing tetrad samples, tetrad imaging, running DeepTetrad, and analysis of DeepTetrad outputs. DeepTetrad-based measurements of crossover frequency and interference ratio will accelerate the genetic dissection of meiotic crossover control.


Assuntos
Troca Genética , Meiose , Segregação de Cromossomos , Recombinação Homóloga , Meiose/genética , Pólen/genética
2.
Plant J ; 101(2): 473-483, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536659

RESUMO

Meiotic crossovers facilitate chromosome segregation and create new combinations of alleles in gametes. Crossover frequency varies along chromosomes and crossover interference limits the coincidence of closely spaced crossovers. Crossovers can be measured by observing the inheritance of linked transgenes expressing different colors of fluorescent protein in Arabidopsis pollen tetrads. Here we establish DeepTetrad, a deep learning-based image recognition package for pollen tetrad analysis that enables high-throughput measurements of crossover frequency and interference in individual plants. DeepTetrad will accelerate the genetic dissection of mechanisms that control meiotic recombination.


Assuntos
Arabidopsis/genética , Aprendizado Profundo , Meiose , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Segregação de Cromossomos , Cromossomos de Plantas , Troca Genética/genética , Troca Genética/fisiologia , Recombinação Homóloga , Pólen/genética , Transgenes
3.
Methods Mol Biol ; 1551: 23-57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138839

RESUMO

During meiosis, homologous chromosomes undergo recombination, which can result in formation of reciprocal crossover molecules. Crossover frequency is highly variable across the genome, typically occurring in narrow hotspots, which has a significant effect on patterns of genetic diversity. Here we describe methods to measure crossover frequency in plants at the hotspot scale (bp-kb), using allele-specific PCR amplification from genomic DNA extracted from the pollen of F1 heterozygous plants. We describe (1) titration methods that allow amplification, quantification and sequencing of single crossover molecules, (2) quantitative PCR methods to more rapidly measure crossover frequency, and (3) application of high-throughput sequencing for study of crossover distributions within hotspots. We provide detailed descriptions of key steps including pollen DNA extraction, prior identification of hotspot locations, allele-specific oligonucleotide design, and sequence analysis approaches. Together, these methods allow the rate and recombination topology of plant hotspots to be robustly measured and compared between varied genetic backgrounds and environmental conditions.


Assuntos
Arabidopsis/genética , DNA de Plantas/genética , Pólen/genética , Proteínas de Arabidopsis/genética , Troca Genética/genética , Meiose/genética , Recombinação Genética/genética
4.
PLoS Genet ; 12(7): e1006179, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27415776

RESUMO

Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Recombinação Genética , Alelos , Proteínas de Arabidopsis/genética , Cruzamentos Genéticos , Genes de Plantas , Variação Genética , Heterozigoto , Desequilíbrio de Ligação , Meiose , Família Multigênica , Hibridização de Ácido Nucleico , Doenças das Plantas/genética , Pólen/metabolismo
5.
Nat Genet ; 45(11): 1327-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056716

RESUMO

PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot-enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Histonas/genética , Meiose/genética , Proteínas dos Microfilamentos/genética , Rad51 Recombinase/genética , Recombinases Rec A/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Metilação de DNA , Histonas/metabolismo , Nucleossomos , Pólen/genética , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA