Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 100(10): 1455-1464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962799

RESUMO

The pharmacological effectiveness of loquat leaf extract (LE) and its important component, ursolic acid (UA), in the treatment of diabetes mellitus, has been well established in traditional medicine; however, the mechanism underlying their action is still unclear. We evaluated the protective effects of LE and UA against hyperglycemia-induced advanced glycation end product (AGE) formations and hepatic pro-inflammation. Oral administration of UA and LE at a dose of 50 mg/kg/day for 15 days yielded no significant hypoglycemic effect in diabetic db/db mice. UA and LE suppressed hepatic oxidative stress and AGE formation in diabetic mice, and this was followed by the downregulated mitogen-activated protein kinase signaling and nuclear factor κ B (NF-κB) activity. To identify the molecular target of LE and UA, a docking simulation was performed, and this predicted UA to bind to liver kinase B1 (LKB1), an upstream of AMP-activated protein kinase (AMPK)/transcription factor forkhead box O3 (FOXO3) axis. UA reversed the high-glucose-induced downregulation of LKB1-AMPK1-FOXO3 activation and antioxidant gene transcription. These findings demonstrated the antioxidant and anti-inflammatory effects of UA and LE against hyperglycemia-induced hepatic inflammation. Furthermore, we speculate that the LKB1/AMPK/FOXO3 pathway is a potential target responsible for these beneficial effects of LE and UA.


Assuntos
Diabetes Mellitus Experimental , Eriobotrya , Hiperglicemia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Eriobotrya/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Ácido Oleanólico/análogos & derivados , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Ursólico
3.
Arch Pharm Res ; 37(8): 1032-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24469601

RESUMO

Oxidative stress has been proposed to be a major cause of aging and many age-related diseases. Peroxynitrite (ONOO(-)), formed from the reaction of superoxide ((•)O2 (-)) and nitric oxide (NO), is a cytotoxic species that can oxidize various cellular components, such as proteins, lipids, and DNA. The present study investigated whether dimethyl lithospermate (DML), isolated from Salvia miltiorrhiza, modulates age-related increases of ONOO(-), NO, and reactive species (RS) levels and expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). For this study, 20-month-old rats were intraperitoneally injected with 5 or 10 mg/kg/day of DML, and 6-month-old rats were used as young control animals. Our results indicated that DML reduces ONOO(-) levels in a dose-dependent manner. The data also revealed that DML has significant inhibitory effects on NO metabolites and RS generation in a dose-dependent manner during aging. Furthermore, the results of Western blot analysis revealed that DML treatment reduces age-associated increases in COX-2 and iNOS expressions. Thus, this study found that DML caused the decrease of renal oxidative stress and COX-2 and iNOS expressions in aged rats. The significance of the present study is the finding of DML in its potential application against the aging process.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/uso terapêutico , Benzofuranos/uso terapêutico , Ciclo-Oxigenase 2/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Benzofuranos/administração & dosagem , Benzofuranos/isolamento & purificação , Regulação para Baixo , Masculino , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Salvia miltiorrhiza/química
4.
Arch Pharm Res ; 37(6): 813-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23918648

RESUMO

Ginsenoside Rc (Rc), a protopanaxadiol type ginsenoside, is the active component mainly responsible for the therapeutic and pharmacologic properties of ginseng, which are derived from its suppression of superoxide-induced free radicals. Forkhead box O (FoxO1) regulates various genes involved in cellular metabolism related to cell death and response to oxidative stress, and Rc is known to prevent FoxO1 phosphorylation by activation of PI3K/Akt and subsequent inhibition of AMP-activated protein kinase (AMPK) in cells exposed to tert-butylhydroperoxide (t-BHP). In the current study, we attempted the mechanism of increased catalase expression by Rc through inhibition of FoxO1 activation resulting from t-BHP-induced production of reactive species (RS). We found that overexpression of catalase induced by Rc resulted in suppression of RS production in kidney human embryo kidney 293T cells (HEK293T) cells, and that oxidative stress induced activation of PI3K/Akt and inhibition of the AMPK pathway and FoxO1 phosphorylation, leading to down-regulation of catalase, a FoxO1-targeting gene. In addition, treatment of HEK293T cells with Rc resulted in cAMP-response element-binding protein (CREB)-binding protein (CBP) regulated FoxO1 acetylation. Our results suggest that Rc modulates FoxO1 phosphorylation through activation of PI3K/Akt and inhibition of AMPK and FoxO1 acetylation through interaction with CBP and SIRT1, and that this leads to upregulation of catalase under conditions of oxidative stress.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Ginsenosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Panax , Proteínas Proto-Oncogênicas c-akt/fisiologia , Relação Dose-Resposta a Droga , Proteína Forkhead Box O1 , Células HEK293 , Humanos , Estresse Oxidativo/fisiologia
5.
PLoS One ; 8(9): e73877, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066081

RESUMO

Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Alho/química , Metaloproteinases da Matriz/metabolismo , NF-kappa B/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Ácidos Cafeicos/uso terapêutico , Cisteína/análogos & derivados , Cisteína/uso terapêutico , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta , Uracila/uso terapêutico
6.
Bioorg Med Chem Lett ; 21(8): 2445-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21397499

RESUMO

In this study, we synthesized hydroxy and/or alkoxy substituted phenyl-benzo[d]thiazole derivatives using substituted benzaldehydes and 2-aminothiophenol in MeOH. The structures of these compounds were established by (1)H and (13)CNMR and mass spectral analyzes. All synthesized compounds were evaluated for their mushroom tyrosinase inhibition activity. Out the 12 generated compounds, 2a and 2d exhibited much higher tyrosinase inhibition activity (45.36-73.07% and 49.94-94.17% at 0.01-20 µM, respectively) than kojic acid (9.29-50.80% at 1.25-20 µM), a positive control. The cytotoxicity of 2a and 2d was evaluated using B16 cells and the compounds were found to be nontoxic. Compounds 2a and 2d were also demonstrated to be potent mushroom tyrosinase inhibitors, displaying IC(50) values of 1.14±0.48 and 0.01±0.0002 µM, respectively, compared with kojic acid, which has an IC(50) value of 18.45±0.17 µM. We also predicted the tertiary structure of tyrosinase, simulated the docking with compounds 2a and 2d and confirmed that the compounds strongly interact with mushroom tyrosinase residues. Kinetic plots showed that 2a and 2d are competitive tyrosinase inhibitors. Substitutions with a hydroxy group at R(3) or both R(3) and R(1) of the phenyl ring indicated that these groups play a major role in the high binding affinity to tyrosinase. We further found that compounds 2a and 2d inhibit melanin production and tyrosinase activity in B16 cells. These results may assist in the development of new potent tyrosinase inhibitors against hyperpigmentation.


Assuntos
Benzotiazóis/uso terapêutico , Monofenol Mono-Oxigenase/antagonistas & inibidores , Agaricales/enzimologia , Animais , Benzotiazóis/química , Benzotiazóis/toxicidade , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Simulação por Computador , Cinética , Melaninas/biossíntese , Melanoma Experimental/tratamento farmacológico , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Pironas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA