Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498469

RESUMO

BACKGROUND: Traditionally Momordica charantia (Bitter gourd) is known for its blood glucose lowering potential. This has been validated by many previous studies based on rodent models but human trials are less convincing and the physiological mechanisms underlying the bioactivity of Bitter gourd are still unclear. The present study compared the effects of whole fruit or stems-leaves from five different Bitter gourd cultivars on metabolic control in adult diabetic obese Göttingen Minipigs. METHODS: Twenty streptozotocin-induced diabetic (D) obese Minipigs (body weight ~85 kg) were subdivided in mildly and overtly D pigs and fed 500 g of obesogenic diet per day for a period of three weeks, supplemented with 20 g dried powdered Bitter gourd or 20 g dried powdered grass as isoenergetic control in a cross-over, within-subject design. RESULTS: Bitter gourd fruit from the cultivars "Palee" and "Good healthy" reduced plasma fructosamine concentrations in all pigs combined (from 450±48 to 423±53 and 490±50 to 404±48 µmol/L, both p<0.03, respectively) indicating improved glycemic control by 6% and 17%. These effects were statistically confirmed in mildly D pigs but not in overtly D pigs. In mildly D pigs, the other three cultivars of fruit showed consistent numerical but no significant improvements in glycemic control. The composition of Bitter gourd fruit was studied by metabolomics profiling and analysis identified three metabolites from the class of triterpenoids (Xuedanoside H, Acutoside A, Karaviloside IX) that were increased in the cultivars "Palee" (>3.9-fold) and "Good healthy" (>8.9-fold) compared to the mean of the other three cultivars. Bitter gourd stems and leaves from the cultivar "Bilai" increased plasma insulin concentrations in all pigs combined by 28% (from 53±6 to 67±9 pmol/L, p<0.03). The other two cultivars of stems and leaves showed consistent numerical but no significant increases in plasma insulin concentrations. The effects on plasma insulin concentrations were confirmed in mildly D pigs but not in overtly D pigs. CONCLUSIONS: Fruits of Bitter gourd improve glycemic control and stems-leaves of Bitter gourd increase plasma insulin concentrations in an obese pig model for mild diabetes. The effects of Bitter gourd fruit on glycemic control seem consistent but relatively small and cultivar specific which may explain the varying results of human trials reported in the literature.


Assuntos
Diabetes Mellitus , Insulinas , Medicina Tradicional Chinesa , Momordica charantia , Animais , Frutosamina , Frutas , Obesidade , Suínos , Porco Miniatura
2.
Handb Exp Pharmacol ; 277: 117-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318326

RESUMO

Natural products have been the most important source for drug development throughout the human history. Over time, the formulation of drugs has evolved from crude drugs to refined chemicals. In modern drug discovery, conventional natural products lead-finding usually uses a top-down approach, namely bio-guided fractionation. In this approach, the crude extracts are separated by chromatography and resulting fractions are tested for activity. Subsequently, active fractions are further refined until a single active compound is obtained. However, this is a painstakingly slow and expensive process. Among the alternatives that have been developed to improve this situation, metabolomics has proved to yield interesting results having been applied successfully to drug discovery in the last two decades. The metabolomics-based approach in lead-finding comprises two steps: (1) in-depth chemical profiling of target samples, e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and biological data by chemometrics. In the first step of this approach, the target samples are chemically profiled in an untargeted manner to detect as many compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and MS/MS spectrometry are the most common profiling tools. The profile data are correlated with the biological activity with the help of various chemometric methods such as multivariate data analysis. This in-silico analysis has a high potential to replace or complement conventional on-silica bioassay-guided fractionation as it will greatly reduce the number of bioassays, and thus time and costs. Moreover, it may reveal synergistic mechanisms, when present, something for which the classical top-down approach is clearly not suited. This chapter aims to give an overview of successful approaches based on the application of chemical profiling with chemometrics in natural products drug discovery.


Assuntos
Produtos Biológicos , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/química , Descoberta de Drogas/métodos , Produtos Biológicos/análise , Produtos Biológicos/química , Cromatografia Líquida , Metabolômica
3.
Planta Med ; 88(9-10): 814-825, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35304734

RESUMO

The isolation of a compound from a natural source involves many organic and mostly toxic solvents for extraction and purification. Natural deep eutectic solvents have been shown to be efficient options for the extraction of natural products. They have the advantage of being composed of abundantly available common primary metabolites, being nontoxic and environmentally safe solvents. The aim of this study was to develop a natural deep eutectic solvent-based extraction method for galanthamine, an important therapeutic agent for the treatment of Alzheimer's disease. This alkaloid can be produced by synthesis or by extraction from Narcissus bulbs. To develop an efficient extraction method, a number of different natural deep eutectic solvents was first tested for their solubilization capacity of galanthamine bromide salt. Promising results were obtained for ionic liquids, as well as some amphoteric and acidic natural deep eutectic solvents. In a two-cycle extraction process, the best solvents were tested for the extraction of galanthamine from bulbs. The ionic liquids produced poor yields, and the best results were obtained with some acid and sugar mixtures, among which malic acid-sucrose-water (1 : 1 : 5) proved to be the best, showing similar yields to that of the exhaustive Soxhlet extraction with methanol. Furthermore, the natural deep eutectic solvent was more selective for galanthamine.


Assuntos
Alcaloides , Líquidos Iônicos , Narcissus , Alcaloides/metabolismo , Solventes Eutéticos Profundos , Galantamina/metabolismo , Líquidos Iônicos/metabolismo , Solventes/metabolismo
4.
Planta Med ; 87(12-13): 1032-1044, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34237788

RESUMO

Despite the extensive studies on latex, some fundamental questions on their chemical specialization and the factors influencing this specialization have yet to be investigated. To address this issue, latexes and their bearing tissues from diverse species were profiled by 1HNMR and GC-MS. Additionally, the antiherbivory activity of these materials was tested against thrips (Frankliniella occidentalis Pergande, 1895). The multivariate data analysis showed a clear separation between latexes and leaves from the same species. Conversely, the chemical profiles of latexes from different species were highly similar, that is, they displayed much less metabolic species-specificity. These shared chemical profiles of latexes were reflected in their overall higher mortality index (80.4% ± 7.5) against thrips compared with their bearing tissues (55.5% ± 14.9). The metabolites correlated to the antiherbivory activity of latexes were triterpenoids and steroids. However, the activity could not be attributed to any single terpenoid. This discrepancy and the reduction of the latex activity after fractionation suggested a complementary effect of the compounds when in a mixture as represented by the latex. Additionally, aqueous fractions of several latexes were found to possess simple spectra, even with only 1 metabolite. These metabolites were determined to be organic acids that might be involved in the modulation of the rate of latex coagulation, potentially increasing the sealing and trapping effects of the latex.


Assuntos
Tisanópteros , Animais , Herbivoria , Látex , Folhas de Planta , Plantas
5.
Water Res ; 201: 117323, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34139511

RESUMO

Natural Deep Eutectic Solvents (NADES) are composed of supramolecular interactions of two or more natural compounds, such as organic acids, sugars, and amino acids, and they are being used as a new media alternative to conventional solvents. In this study, a new application of NADES is presented as a possible technology for biofilm structural breaker in complex systems since the current solvents used for biofilm cleaning and extraction of biofilm components use hazardous solutions. The NADES (betaine:urea:water and lactic acid:glucose:water) were analyzed before and after the biofilm treatment by attenuated total reflection Fourier-transform infrared spectroscopy and fluorescence excitation-emission matrix spectroscopy. Our results indicate that the green solvents could solubilize up to ≈70 percent of the main components of the biofilms extracellular matrix. The solubilization of the biomolecules weakened the biofilm structure, which could enhance the biofilm solubilization and removal. The NADES have the potential to be an environment-friendly, green solvent to extract valuable compounds and break the main structure from the biofilm, leading to a greener method for extracellular polymeric substance (EPS) extraction and biofilm treatment in various water treatment systems.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Extratos Vegetais , Solventes , Água
6.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499348

RESUMO

Mass spectrometry-based molecular imaging has been utilized to map the spatial distribution of target metabolites in various matrixes. Among the diverse mass spectrometry techniques, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is the most popular for molecular imaging due to its powerful spatial resolution. This unparalleled high resolution, however, can paradoxically act as a bottleneck when the bio-imaging of large areas, such as a whole plant, is required. To address this issue and provide a more versatile tool for large scale bio-imaging, direct analysis in real-time-time of flight-mass spectrometry (DART-TOF-MS), an ambient ionization MS, was applied to whole plant bio-imaging of a medicinal plant, Ephedrae Herba. The whole aerial part of the plant was cut into 10-20 cm long pieces, and each part was further cut longitudinally to compare the contents of major ephedra alkaloids between the outer surface and inner part of the stem. Using optimized DART-TOF-MS conditions, molecular imaging of major ephedra alkaloids of the whole aerial part of a single plant was successfully achieved. The concentration of alkaloids analyzed in this study was found to be higher on the inner section than the outer surface of stems. Moreover, side branches, which are used in traditional medicine, represented a far higher concentration of alkaloids than the main stem. In terms of the spatial metabolic distribution, the contents of alkaloids gradually decreased towards the end of branch tips. In this study, a fast and simple macro-scale MS imaging of the whole plant was successfully developed using DART-TOF-MS. This application on the localization of secondary metabolites in whole plants can provide an area of new research using ambient ionization mass spectroscopy and an unprecedented macro-scale view of the biosynthesis and distribution of active components in medicinal plants.


Assuntos
Alcaloides/metabolismo , Ephedra/metabolismo , Espectrometria de Massas/métodos , Plantas Medicinais/metabolismo , Efedrina/análogos & derivados , Efedrina/metabolismo , Espectrometria de Massas/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Componentes Aéreos da Planta/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
PLoS One ; 15(4): e0230690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298276

RESUMO

In recent years, chronic degenerative diseases such as certain types of cancers, are becoming an evident issue. DNA damage has been for long recognized as a causal factor for cancer development because mutations or chromosomal aberrations affect oncogenes and tumor suppressor genes leading cells to malignant transformation and to the subsequent cancerous growth. Medicinal plants are often used for the prevention or treatment of various diseases with great scientific interest. Among the medicinal plants distributed in the Mediterranean region, Fraxinus angustifolia Vahl. has been used in traditional medicine for its remarkable curative properties. However, in spite of this popularity, little works have been performed on the activity so that further studies should be performed to investigate in depth the antimutagenic, antigenotoxic and antiproliferative activities of the plant. Thus, the present study was aimed to the evaluation of the potential antimutagenic, antigenotoxic and antiproliferative properties of leaves and stem bark extracts of this well-known tree. Antimutagenic activity was evaluated by Salmonella mutagenicity assay in Salmonella typhimurium TA98 and TA100 strains. The antigenotoxic potential was assessed by umu test in the strain of S. typhimurium TA1535/pSK1002. Antiproliferative activity was studied on human hepatoblastoma (HepG-2) and on breast adenocarcinoma (MCF-7) cell lines by MTT assay. Furthermore, the antiproliferative activity observed on cancer cells was compared with that on the human normal-like fibroblasts (TelCOFS02MA) and the selectivity index was calculated to understand if extracts were able to exert selective toxicity towards cancer cells. Moreover, phenolic compounds are plant substances with a large spectrum of biochemical activities with antioxidant, antimutagenic and anticarcinogenic effects. Based on the strong evidence of biological activities of phenolic compounds, the study was focused on the determination of total phenolics and flavonoids contents, and the phytochemical composition of the extracts assessed by LC/MS. The ethanol extracts of both leaves and stem barks showed significant from moderate to strong antimutagenic and antigenotoxic effects. In addition, selective cytotoxicity towards cancer cells was shown by ethanolic leaves extract and aqueous/chloroform leaves and stem bark extracts. The latter showed high levels of total phenolic contents among all the other extracts. Identified phenylethanoids (calceolariosides, verbascoside) and secoiridoids (oleuropein and ligstroside) could be responsible for the demonstrated broad spectrum of healthy properties.


Assuntos
Antimutagênicos/farmacologia , Fraxinus/química , Mutagênicos/toxicidade , Casca de Planta/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Células MCF-7
8.
Molecules ; 25(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023899

RESUMO

Natural deep eutectic solvents (NADES) are a type of ionic liquid (IL) or deep eutectic solvent (DES), the ingredients of which are exclusively natural products (non-toxic and environmentally friendly). Here, we explore the potential of NADES as an alternative to conventional organic solvents (e.g., aqueous methanol or ethanol) for the extraction of flavonoids from Scutellaria baicalensis stem bark to investigate their extractability depending on structural variation. Four NADES, each containing citric acid in combination with ß-alanine, glucose, xylitol, or proline (at a molar ratio of 1:1), and a variable amount of water, were used to extract the flavonoid aglycones: baicalein (1), scutellarein (3), wogonin (5), and oroxylin A (7), and their glycosides, baicalin (2), scutellarin (4), wogonoside (6) and oroxyloside (8) from the powdered bark of S. baicalensis. The chemical profile and yield of the extracts were determined using HPTLC and HPLC. The extractability of individual flavonoids was found to be influenced by the concentration of water (20-60%, w/w) in the NADES. Among the tested flavonoids, the extraction yield of baicalein (1), scutellarein (3), wogonin (5), oroxylin A (7) with NADES was 2 to 6 times that of aqueous methanol. However, the amount of their corresponding glycosides (baicalin (2), wogonoside (6) and oroxyloside (8)) extracted with NADES was only 1.5-1.8 times higher than with aqueous methanol. Interestingly, the more hydrophilic glycosides were less extracted than their corresponding aglycones despite the high hydrophilicity of the NADES. These results prove that NADES may be used for extraction of compounds with a wide range of hydrophilicity.


Assuntos
Ácido Cítrico/química , Flavonoides/análise , Scutellaria baicalensis/química , Solventes/química , Água/química , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Glucose/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Extratos Vegetais/química , Prolina/química , Xilitol/química , beta-Alanina/química
9.
Plants (Basel) ; 8(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766620

RESUMO

Methyl jasmonate is capable of initiating or improving the biosynthesis of secondary metabolites in plants and therefore has opened up a concept for the biosynthesis of valuable constituents. In this study, the effect of different doses of methyl jasmonate (MeJA) elicitation on the accumulation of terpenoid indole alkaloids (TIAs) in the hairy root cultures of the medicinal plant, Rhazya stricta throughout a time course (one-seven days) was investigated. Gas chromatography-mass spectrometry (GC-MS) analyses were carried out for targeted ten major non-polar alkaloids. Furthermore, overall alterations in metabolite contents in elicited and control cultures were investigated applying proton nuclear magnetic resonance (1H NMR) spectroscopy. Methyl jasmonate caused dosage- and time course-dependent significant rise in the accumulation of TIAs as determined by GC-MS. The contents of seven alkaloids including eburenine, quebrachamine, fluorocarpamine, pleiocarpamine, tubotaiwine, tetrahydroalstonine, and ajmalicine increased compared to non-elicited cultures. However, MeJA-elicitation did not induce the accumulation of vincanine, yohimbine (isomer II), and vallesiachotamine. Furthermore, principal component analysis (PCA) of 1H NMR metabolic profiles revealed a discrimination between elicited hairy roots and control cultures with significant increase in total vindoline-type alkaloid content and elevated levels of organic and amino acids. In addition, elicited and control samples had different sugar and fatty acid profiles, suggesting that MeJA also influences the primary metabolism of R. stricta hairy roots. It is evident that methyl jasmonate is applicable for elevating alkaloid accumulation in "hairy root" organ cultures of R. strica.

10.
Planta Med ; 85(11-12): 917-924, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207650

RESUMO

Ideally, metabolomics should deal with all the metabolites that are found within cells and biological systems. The most common technologies for metabolomics include mass spectrometry, and in most cases, hyphenated to chromatographic separations (liquid chromatography- or gas chromatography-mass spectrometry) and nuclear magnetic resonance spectroscopy. However, limitations such as low sensitivity and highly congested spectra in nuclear magnetic resonance spectroscopy and relatively low signal reproducibility in mass spectrometry impede the progression of these techniques from being universal metabolomics tools. These disadvantages are more notorious in studies of certain plant secondary metabolites, such as saponins, which are difficult to analyse, but have a great biological importance in organisms. In this study, high-performance thin-layer chromatography was used as a supplementary tool for metabolomics. A method consisting of coupling 1H nuclear magnetic resonance spectroscopy and high-performance thin-layer chromatography was applied to distinguish between Ophiopogon japonicus roots that were collected from two growth locations and were of different ages. The results allowed the root samples from the two growth locations to be clearly distinguished. The difficulties encountered in the identification of the marker compounds by 1H nuclear magnetic resonance spectroscopy was overcome using high-performance thin-layer chromatography to separate and isolate the compounds. The saponins, ophiojaponin C or ophiopogonin D, were found to be marker metabolites in the root samples and proved to be greatly influenced by plant growth location, but barely by age variation. The procedure used in this study is fully described with the purpose of making a valuable contribution to the quality control of saponin-rich herbal drugs using high-performance thin-layer chromatography as a supplementary analytical tool for metabolomics research.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ophiopogon/metabolismo , Raízes de Plantas/metabolismo , Saponinas/metabolismo , Cromatografia em Camada Fina/métodos , Espectroscopia de Ressonância Magnética , Metabolômica , Ophiopogon/química , Raízes de Plantas/química , Saponinas/análise , Saponinas/química , Espirostanos/química
11.
Planta Med ; 85(11-12): 856-868, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31137048

RESUMO

Historically, latex-bearing plants have been regarded as important medicinal resources in many countries due to their characteristic latex ingredients. They have also often been endowed with a social or cultural significance in religious or cult rituals or for hunting. Initial chemical studies focused on the protein or peptide content but recently the interest extended to smaller molecules. Latex has been found to contain a broad range of specialized metabolites such as terpenoids, cardenolides, alkaloids, and phenolics, which are partly responsible for their antibacterial, antifungal, anthelmintic, cytotoxic, and insect-repellent activities. The diversity in biology and chemistry of latexes is supposedly associated to their ecological roles in interactions with exogenous factors. Latexes contain unique compounds that are different to those found in their bearing plants. Exploring the feasibility of plant latex as a new type of bioactive chemical resource, this review paper covers the chemical characterization of plant latexes, extending this to various other plant exudates. Also, the factors influencing this chemical differentiation and the production, transportation, and chemistry of the latex exudates are described, based on ecological and biochemical mechanisms. We also proposed a latex coagulation model involving 4 general conserved steps. Therefore, the inherent defensive origin of latexes is recognized as their most valuable character and encourages one to pay attention to these materials as alternative sources to discover metabolites with insecticidal or antimicrobial activity.


Assuntos
Látex/química , Extratos Vegetais/química , Ecologia , Látex/farmacologia , Extratos Vegetais/farmacologia , Plantas/metabolismo
12.
Metabolomics ; 15(3): 27, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830464

RESUMO

INTRODUCTION: The increase in multidrug resistance and lack of efficacy in malaria therapy has propelled the urgent discovery of new antiplasmodial drugs, reviving the screening of secondary metabolites from traditional medicine. In plant metabolomics, NMR-based strategies are considered a golden method providing both a holistic view of the chemical profiles and a correlation between the metabolome and bioactivity, becoming a corner stone of drug development from natural products. OBJECTIVE: Create a multivariate model to identify antiplasmodial metabolites from 1H NMR data of two African medicinal plants, Keetia leucantha and K. venosa. METHODS: The extracts of twigs and leaves of Keetia species were measured by 1H NMR and the spectra were submitted to orthogonal partial least squares (OPLS) for antiplasmodial correlation. RESULTS: Unsupervised 1H NMR analysis showed that the effect of tissues was higher than species and that triterpenoids signals were more associated to Keetia twigs than leaves. OPLS-DA based on Keetia species correlated triterpene signals to K. leucantha, exhibiting a higher concentration of triterpenoids and phenylpropanoid-conjugated triterpenes than K. venosa. In vitro antiplasmodial correlation by OPLS, validated for all Keetia samples, revealed that phenylpropanoid-conjugated triterpenes were highly correlated to the bioactivity, while the acyclic squalene was found as the major metabolite in low bioactivity samples. CONCLUSION: NMR-based metabolomics combined with supervised multivariate data analysis is a powerful strategy for the identification of bioactive metabolites in plant extracts. Moreover, combination of statistical total correlation spectroscopy with 2D NMR allowed a detailed analysis of different triterpenes, overcoming the challenge posed by their structure similarity and coalescence in the aliphatic region.


Assuntos
Antimaláricos/farmacologia , Rubiaceae/metabolismo , Triterpenos/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Análise Multivariada , Extratos Vegetais , Folhas de Planta/química , Triterpenos/análise
13.
Planta Med ; 84(12-13): 833, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064150
14.
Planta Med ; 84(12-13): 941-946, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797306

RESUMO

This paper describes the use of 1H NMR profiling and chemometrics in order to facilitate the selection of medicinal plants as potential sources of collagenase inhibitors. A total of 49 plants with reported ethnobotanical uses, such as the healing of wounds and burns, treatment of skin-related diseases, rheumatism, arthritis, and bone diseases, were initially chosen as potential candidates. The in vitro collagenase inhibitory activity of hydroalcoholic extracts of these plants was tested. Moreover, their phytochemical profiles were analyzed by 1H NMR and combined with the inhibitory activity data by an orthogonal partial least squares model. The results showed a correlation between the bioactivity and the concentration of phenolics, including flavonoids, phenylpropanoids, and tannins, in the extracts. Considering the eventual false-positive effect on the bioactivity given by tannins, a tannin removal procedure was performed on the most active extracts. After this procedure, Alchemilla vulgaris was the most persistently active, proving to owe its activity to compounds other than tannins. Thus, this plant was selected as the most promising and further investigated through bioassay-guided fractionation, which resulted in the isolation of a flavonoid, quercetin-3-O-ß-glucuronide, as confirmed by NMR and HRMS spectra. This compound showed not only a higher activity than other flavonoids with the same aglycone moiety, but was also higher than doxycycline (positive control), the only Federal Drug Administration-approved collagenase inhibitor. The approach employed in this study, namely the integration of metabolomics and bioactivity-guided fractionation, showed great potential as a tool for plant selection and identification of bioactive compounds in natural product research.


Assuntos
Alchemilla/química , Flavonoides/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Metabolômica , Quercetina/análogos & derivados , Colagenases , Flavonoides/química , Flavonoides/isolamento & purificação , Espectroscopia de Ressonância Magnética , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/isolamento & purificação , Plantas Medicinais , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia
15.
J Chromatogr A ; 1532: 198-207, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29229334

RESUMO

Natural deep eutectic solvents (NADES) made mainly with abundant primary metabolites are being increasingly applied in green chemistry. The advantages of NADES as green solvents have led to their use in novel green products for the food, cosmetics and pharma markets. However, one of the main difficulties encountered in the development of novel products and their quality control arises from their low vapour pressure and high viscosity. These features create the need for the development of new analytical methods suited to this type of sample. In this study, such a method was developed and applied to analyse the efficiency of a diverse set of NADES for the extraction of compounds of interest from two model plants, Ginkgo biloba and Panax ginseng. The method uses high-performance thin-layer chromatography (HPTLC) coupled with multivariate data analysis (MVDA). It was successfully applied to the comparative quali- and quantitative analysis of very chemically diverse metabolites (e.g., phenolics, terpenoids, phenolic acids and saponins) that are present in the extracts obtained from the plants using six different NADES. The composition of each NADES was a combination of two or three compounds mixed in defined molar ratios; malic acid-choline chloride (1:1), malic acid-glucose (1:1), choline chloride-glucose (5:2), malic acid-proline (1:1), glucose-fructose-sucrose (1:1:1) and glycerol-proline-sucrose (9:4:1). Of these mixtures, malic acid-choline chloride (1:1) and glycerol-proline-sucrose (1:1:1) for G. biloba leaves, and malic acid-choline chloride (1:1) and malic acid-glucose (1:1) for P. ginseng leaves and stems showed the highest yields of the target compounds. Interestingly, none of the NADES extracted ginkgolic acids as much as the conventional organic solvents. As these compounds are considered to be toxic, the fact that these NADES produce virtually ginkgolic acid-free extracts is extremely useful. The effect of adding different volumes of water to the most efficient NADES was also evaluated and the results revealed that there is a great influence exerted by the water content, with maximum yields of ginkgolides, phenolics and ginsenosides being obtained with approximately 20% water (w/w).


Assuntos
Cromatografia em Camada Fina/métodos , Extratos Vegetais/química , Solventes/química , Análise Discriminante , Ginkgo biloba , Análise dos Mínimos Quadrados , Panax/química , Análise de Componente Principal , Viscosidade , Água/química
16.
Metabolomics ; 14(10): 137, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830440

RESUMO

INTRODUCTION: The pharmacological activities of medicinal plants are reported to be due to a wide range of metabolites, therein, the concentrations of which are greatly affected by many genetic and/or environmental factors. In this context, a metabolomics approach has been applied to reveal these relationships. The investigation of such complex networks that involve the correlation between multiple biotic and abiotic factors and the metabolome, requires the input of information acquired by more than one analytical platform. Thus, development of new metabolomics techniques or hyphenations is continuously needed. OBJECTIVES: Feasibility of high performance thin-layer chromatography (HPTLC) were investigated as a supplementary tool for medicinal plants metabolomics supporting 1H nuclear magnetic resonance (1H NMR) spectroscopy. METHOD: The overall metabolic difference of plant material collected from two species (Rheum palmatum and Rheum tanguticum) in different geographical locations and altitudes were analyzed by 1H NMR- and HPTLC-based metabolic profiling. Both NMR and HPTLC data were submitted to multivariate data analysis including principal component analysis and orthogonal partial least square analysis. RESULTS: The NMR and HPTLC profiles showed that while chemical variations of rhubarb are in some degree affected by all the factors tested in this study, the most influential factor was altitude of growth. The metabolites responsible for altitude differentiation were chrysophanol, emodin and sennoside A, whereas aloe emodin, catechin, and rhein were the key species-specific markers. CONCLUSION: These results demonstrated the potential of HTPLC as a supporting tool for metabolomics due to its high profiling capacity of targeted metabolic groups and preparative capability.


Assuntos
Metabolômica , Raízes de Plantas/metabolismo , Rheum/metabolismo , Cromatografia em Camada Fina , Raízes de Plantas/química , Espectroscopia de Prótons por Ressonância Magnética , Rheum/química , Especificidade da Espécie
17.
Sci Rep ; 7(1): 3777, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630440

RESUMO

The spread of multidrug-resistant Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA), has shortened the useful life of anti-staphylococcal drugs enormously. Two approaches can be followed to address this problem: screening various sources for new leads for antibiotics or finding ways to disable the resistance mechanisms to existing antibiotics. Plants are resistant to most microorganisms, but despite extensive efforts to identify metabolites that are responsible for this resistance, no substantial progress has been made. Plants possibly use multiple strategies to deal with microorganisms that evolved over time. For this reason, we searched for plants that could potentiate the effects of known antibiotics. From 29 plant species tested, Cytisus striatus clearly showed such an activity and an NMR-based metabolomics study allowed the identification of compounds from the plant extracts that could act as antibiotic adjuvants. Isoflavonoids were found to potentiate the effect of ciprofloxacin and erythromycin against MRSA strains. For the structure-activity relationship (SAR), 22 isoflavonoids were assessed as antibiotic adjuvants. This study reveals a clear synergy between isoflavonoids and the tested antibiotics, showing their great potential for applications in the clinical therapy of infections with antibiotic-resistant microorganisms such as MRSA.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Cytisus/química , Eritromicina/farmacologia , Isoflavonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Folhas de Planta/química , Antibacterianos/química , Ciprofloxacina/agonistas , Sinergismo Farmacológico , Eritromicina/agonistas , Isoflavonas/agonistas , Isoflavonas/química
18.
J Chromatogr A ; 1434: 50-6, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26822320

RESUMO

Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics.


Assuntos
Antocianinas/isolamento & purificação , Produtos Biológicos/química , Catharanthus/química , Extratos Vegetais/isolamento & purificação , Solventes/química , Antocianinas/análise , Antocianinas/química , Cromatografia Líquida de Alta Pressão , Metabolômica , Extratos Vegetais/análise , Extratos Vegetais/química
19.
Molecules ; 20(2): 3389-405, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25690295

RESUMO

Astragalus roots from Astragalus membranaceus Bunge or Astragalus membranaceus var. mongholicus (Bunge) Hsiao are among the most popular traditional medicinal plants due to their diverse therapeutic uses based on their tonic, antinephritic, immunostimulant, hepatoprotectant, diuretic, antidiabetic, analgesic, expectorant and sedative properties. Currently, the herb is produced or cultivated in various sites, including 10 different locations in China with very diverse environmental conditions. These differences affect their metabolic pools and consequently their medicinal properties. The comparative metabolic profiling of plants of different geographical origins or ages could contribute to detect biomarkers for their quality control and thus guarantee the efficacy of the herbal medicines produced with this drug. In this paper nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was applied for to plants of different origins and age for this purpose. The results of this study show that in the set of samples evaluated, age is more discriminating than geographical location. The quantity of individual flavonoids and some primary metabolites contributed most to this age differentiation. On the other hand, based on the analysis of orthogonal partial least square (OPLS) modeling, the marker metabolites for the geographical origin were saponins and isoflavonoids.


Assuntos
Astragalus propinquus/química , Isoflavonas/química , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Raízes de Plantas/química , Saponinas/química , Astragalus propinquus/metabolismo , Isoflavonas/metabolismo , Metabolômica/métodos , Raízes de Plantas/metabolismo , Saponinas/metabolismo
20.
Planta Med ; 80(14): 1227-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25098933

RESUMO

We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies.


Assuntos
Metaboloma , Estresse Fisiológico , Estresse Psicológico , Peixe-Zebra , Animais , Feminino , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica , Análise Multivariada , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA