Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Asian Nat Prod Res ; 23(10): 961-967, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33030059

RESUMO

Two new dammarane-type triterpenoids, notoginsenoside SY3 (1) and notoginsenoside SY4 (2), were isolated from the steamed roots of Panax notoginseng. Their structures were determined to be 3ß, 12ß, 20(S)-trihydroxy-27-anordammar-23(24)(E)-ene-3-O-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside (1) and 3ß, 12ß, 20(S)-trihydroxy-25-methoxyldammar-23(24)(E)-ene-3-O-ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside (2) by IR, HRESIMS and NMR experiments.


Assuntos
Panax notoginseng , Panax , Saponinas , Triterpenos , Estrutura Molecular , Damaranos
2.
J Asian Nat Prod Res ; 23(4): 341-347, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124646

RESUMO

Two new dammarane-type triterpenoids, notoginsenoside SY1 (1) and notoginsenoside SY2 (2), were isolated from the stems and leaves of Panax notoginseng. Their structures were elucidated to be 3ß, 12ß-dihydroxy-22, 23, 24, 25, 26, 27-hexanordammarane-20-one 3-O-ß-D-xylopyranosyl-(1→2)-O-ß-D-glucopyranosyl-(1→2)-O-ß-D-glucopyranoside (1), 3ß, 12ß-dihydroxy-20S, 24 R-epoxydammar-25-ene 3-O-ß-D-xylopyranosyl-(1→2)-O-ß-D-glucopyranosyl-(1→2)-O-ß-D-glucopyranoside (2) by IR, HRESIMS and NMR experiments.[Formula: see text].


Assuntos
Panax notoginseng , Panax , Saponinas , Triterpenos , Estrutura Molecular , Folhas de Planta , Damaranos
3.
Plant Cell Environ ; 37(5): 1144-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24237159

RESUMO

Polygalacturonase (PG), one of the hydrolases responsible for cell wall pectin degradation, is involved in organ consenescence and biotic stress in plants. PG1 is composed of a catalytic subunit, PG2, and a non-catalytic PG1ß subunit. OsBURP16 belongs to the PG1ß-like subfamily of BURP-family genes and encodes one putative PG1ß subunit precursor in rice (Oryza sativa L.). Transcription of OsBURP16 is induced by cold, salinity and drought stresses, as well as by abscisic acid (ABA) treatment. Analysis of plant survival rates, relative ion leakage rates, accumulation levels of H2 O2 and water loss rates of leaves showed that overexpression of OsBURP16 enhanced sensitivity to cold, salinity and drought stresses compared with controls. Young leaves of Ubi::OsBURP16 transgenic plants showed reduced cell adhesion and increased cuticular transpiration rate. Mechanical strength measurement of Ubi::OsBURP16 plants showed that reduced force was required to break leaves as compared with wild type. Transgenic rice showed enhanced PG activity and reduced pectin content. All these results suggested that overexpression of OsBURP16 caused pectin degradation and affected cell wall integrity as well as transpiration rate, which decreased tolerance to abiotic stresses.


Assuntos
Oryza/citologia , Oryza/enzimologia , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Adesão Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Temperatura Baixa , Secas , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Oryza/genética , Oryza/fisiologia , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transpiração Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Poligalacturonase/química , Poligalacturonase/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Ácidos Urônicos/metabolismo
4.
Plant Cell ; 25(4): 1288-303, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23613199

RESUMO

There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Domínio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Pólen/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Hibridização In Situ , Proteínas de Domínio MADS/classificação , Proteínas de Domínio MADS/metabolismo , Microscopia Eletrônica de Transmissão , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Tubo Polínico/ultraestrutura , Ligação Proteica , Protoplastos/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Plant J ; 51(5): 919-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17617177

RESUMO

In contrast to animals, in which products of meiosis differentiate directly into sperm, flowering plants employ a specific mechanism to give rise to functional sperm cells, the specifics of which remain largely unknown. A previous study revealed that, compared to yeast and vertebrates, which have two proteins (Rad21 and its meiosis-specific variant Rec8) that play a vital role in sister chromatid cohesion and segregation for mitosis and meiosis, respectively, the rice genome encodes four Rad21/Rec8 proteins (OsRad21s). In this paper, phylogenetic and immunostaining analyses reveal that OsRad21-3 is an orthologue of yeast Rad21. OsRAD21-3 transcript and protein accumulated preferentially in flowers, with low levels in vegetative tissues. In flowers, they persisted from the stamen and carpel primordia stages until the mature pollen stage. OsRAD21-3-deficient RNAi lines showed arrested pollen mitosis, aberrant pollen chromosome segregation and aborted pollen grains, which led to disrupted pollen viability. However, male meiosis in these RNAi lines did not appear to be severely disrupted, which suggests that the main involvement of OsRAD21-3 is in post-meiotic pollen development by affecting pollen mitosis. Furthermore, of the four OsRAD21 genes in the rice genome, only OsRAD21-3 was expressed in pollen grains. Given that the mechanism involving generation of sperm cells differs between flowering plants and metozoans, this study shows, in part, why flowering plants of rice and Arabidopsis have four Rad21/Rec8 proteins, as compared with two in yeast and metozoans, and gives some clues to the functional differentiation of Rad21/Rec8 proteins during evolution.


Assuntos
Cromossomos de Plantas/fisiologia , Mitose/fisiologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Pólen/crescimento & desenvolvimento , Proteínas de Ciclo Celular , Cromossomos de Plantas/metabolismo , Regulação para Baixo , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Meiose/fisiologia , Proteínas Nucleares , Oryza/genética , Oryza/metabolismo , Fosfoproteínas , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Interferência de RNA , Proteínas de Schizosaccharomyces pombe , Sementes/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
6.
Mol Cell Proteomics ; 6(2): 207-30, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17132620

RESUMO

Mature pollen from most plant species is metabolically quiescent; however, after pollination, it germinates quickly and gives rise to a pollen tube to transport sperms into the embryo sac. Because methods for collecting a large amount of in vitro germinated pollen grains for transcriptomics and proteomics studies from model plants of Arabidopsis and rice are not available, molecular information about the germination developmental process is lacking. Here we describe a method for obtaining a large quantity of in vitro germinating rice pollen for proteomics study. Two-dimensional electrophoresis of approximately 2300 protein spots revealed 186 that were differentially expressed in mature and germinated pollen. Most showed a changed level of expression, and only 66 appeared to be specific to developmental stages. Furthermore 160 differentially expressed protein spots were identified on mass spectrometry to match 120 diverse protein species. These proteins involve different cellular and metabolic processes with obvious functional skew toward wall metabolism, protein synthesis and degradation, cytoskeleton dynamics, and carbohydrate/energy metabolism. Wall metabolism-related proteins are prominently featured in the differentially expressed proteins and the pollen proteome as compared with rice sporophytic proteomes. Our study also revealed multiple isoforms and differential expression patterns between isoforms of a protein. These results provide novel insights into pollen function specialization.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Pólen/fisiologia , Proteômica/métodos , Eletroforese em Gel Bidimensional , Oryza/genética , Proteínas de Plantas/genética , Pólen/metabolismo , Tubo Polínico/fisiologia , Isoformas de Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
7.
Plant Mol Biol ; 60(4): 533-54, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16525890

RESUMO

In yeast, Rad21/Scc1 and its meiotic variant Rec8 are key players in the establishment and subsequent dissolution of sister chromatid cohesion for mitosis and meiosis, respectively, which are essential for chromosome segregation. Unlike yeast, our identification revealed that the rice genome has 4 RAD21-like genes that share lower than 21% identity at polypeptide levels, and each is present as a single copy in this genome. Here we describe our analysis of the function of OsRAD21-4 by RNAi. Western blot analyses indicated that the protein was most abundant in young flowers and less in leaves and buds but absent in roots. In flowers, the expression was further defined to premeiotic pollen mother cells (PMCs) and meiotic PMCs of anthers. Meiotic chromosome behaviors were monitored from male meiocytes of OsRAD21-4-deficient lines mediated by RNAi. The male meiocytes showed multiple aberrant events at meiotic prophase I, including over-condensation of chromosomes, precocious segregation of homologues and chromosome fragmentation. Fluorescence in situ hybridization experiments revealed that the deficient lines were defective in homologous pairing and cohesion at sister chromatid arms. These defects resulted in unequal chromosome segregation and aberrant spore generation. These observations suggest that OsRad21-4 is essential for efficient meiosis.


Assuntos
Proteínas Cromossômicas não Histona , Meiose/fisiologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Sobrevivência Celular , Cromátides/genética , Cromossomos de Plantas/genética , Clonagem Molecular , DNA Complementar/genética , Éxons/genética , Flores/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oryza/genética , Filogenia , Infertilidade das Plantas , Proteínas de Plantas/genética , Pólen/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
8.
Proteomics ; 6(8): 2504-29, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16548068

RESUMO

As a highly reduced organism, pollen performs specialized functions to generate and carry sperm into the ovule by its polarily growing pollen tube. Yet the molecular genetic basis of these functions is poorly understood. Here, we identified 322 unique proteins, most of which were not reported previously to be in pollen, from mature pollen of Oryza sativa L. ssp japonica using a proteomic approach, 23% of them having more than one isoform. Functional classification reveals that an overrepresentation of the proteins was related to signal transduction (10%), wall remodeling and metabolism (11%), and protein synthesis, assembly and degradation (14%), as well as carbohydrate and energy metabolism (25%). Further, 11% of the identified proteins are functionally unknown and do not contain any conserved domain associated with known activities. These analyses also identified 5 novel proteins by de novo sequencing and revealed several important proteins, mainly involved in signal transduction (such as protein kinases, receptor kinase-interacting proteins, guanosine 5'-diphosphate dissociation inhibitors, C2 domain-containing proteins, cyclophilins), protein synthesis, assembly and degradation (such as prohibitin, mitochondrial processing peptidase, putative UFD1, AAA+ ATPase), and wall remodeling and metabolism (such as reversibly glycosylated polypeptides, cellulose synthase-like OsCsLF7). The study is the first close investigation, to our knowledge, of protein complement in mature pollen, and presents useful molecular information at the protein level to further understand the mechanisms underlying pollen germination and tube growth.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/química , Pólen/química , Proteômica/métodos , Sequência de Aminoácidos , Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Isoformas de Proteínas , Transdução de Sinais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Plant Mol Biol ; 58(5): 721-37, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16158245

RESUMO

In flowering plants, anthers bear male gametophytes whose development is regulated by the elaborate coordination of many genes. In addition, both gibberellic acid (GA3) and jasmonic acid (JA) play important roles in anther development and pollen fertility. To facilitate the analysis of anther development genes and how GA3 and JA regulate anther development, we performed microarray experiments using a 10-K cDNA microarray with probes derived from seedlings, meiotic anthers, mature anthers and GA3- or JA-treated suspension cells of rice. The expression level change of 2155 genes was significantly (by 2-fold or greater) detected in anthers compared with seedlings. Forty-seven genes, representing genes with potential function in cell cycle and cell structure regulation, hormone response, photosynthesis, stress resistance and metabolism, were differentially expressed in meiotic and mature anthers. Moreover, 314 genes responded to either GA3 or JA treatment, and 24 GA3- and 82 JA-responsive genes showed significant changes in expression between meiosis and the mature anther stages. RT-PCR demonstrated that gene y656d05 was not only highly expressed in meiotic anthers but also induced by GA3. Strong RNA signals of y656d05 were detected in pollen mother cells and tapetum in in situ hybridization. Further characterization of these candidate genes can contribute to the understanding of the molecular mechanism of anther development and the involvement of JA and GA3 signals in the control of anther development in rice.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oryza/genética , Pólen/genética , Células Cultivadas , Análise por Conglomerados , Ciclopentanos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Hibridização In Situ , Oryza/citologia , Oryza/crescimento & desenvolvimento , Oxilipinas , Reguladores de Crescimento de Plantas/farmacologia , Pólen/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Planta Med ; 70(4): 347-52, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15095151

RESUMO

The flowering promoting factor1 ( fpf1) from Arabidopsis thaliana was transferred into Artemisia annua L. via Agrobacterium tumefaciens. The fpf1 gene was firstly inserted in the binary vector pBI121 under the control of CaMV 35S promoter to construct the plant expression vector pBIfpf1, then leaf explants of A. annua were infected with A. tumefaciens LBA4404 containing pBIfpf1, and induced shoots. Transgenic plants were obtained through the selection with kanamycin. PCR, PCR-Southern and Southern blot analyses confirmed that the foreign fpf1 gene had been integrated into the A. annua genome. RT-PCR and RT-PCR-Southern analyses suggested that the foreign fpf1 gene had expressed at the transcriptional level. Under short-day conditions, the flowering time of fpf1 transgenic plants was about 20 days earlier than the non-transformed plants; however, no significant differences were detected in artemisinin content between the flowering transgenic plants and the non-flowering non-transgenic plants. These results showed that flowering is not a necessary factor for increasing the artemisinin content, furthermore, there may be no direct linkage between flowering and artemisinin biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Artemisia annua/genética , Artemisininas/metabolismo , Fitoterapia , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Artemisia annua/crescimento & desenvolvimento , Artemisia annua/metabolismo , Primers do DNA , Flores , Humanos , Luz , Folhas de Planta , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA