Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 401: 123282, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32634659

RESUMO

Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Tecnologia
2.
Environ Int ; 108: 103-118, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843139

RESUMO

The last few decades have seen the rise of alternative medical approaches including the use of herbal supplements, natural products, and traditional medicines, which are collectively known as 'Complementary medicines'. However, there are increasing concerns on the safety and health benefits of these medicines. One of the main hazards with the use of complementary medicines is the presence of heavy metal(loid)s such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). This review deals with the characteristics of complementary medicines in terms of heavy metal(loid)s sources, distribution, bioavailability, toxicity, and human risk assessment. The heavy metal(loid)s in these medicines are derived from uptake by medicinal plants, cross-contamination during processing, and therapeutic input of metal(loid)s. This paper discusses the distribution of heavy metal(loid)s in these medicines, in terms of their nature, concentration, and speciation. The importance of determining bioavailability towards human health risk assessment was emphasized by the need to estimate daily intake of heavy metal(loid)s in complementary medicines. The review ends with selected case studies of heavy metal(loid) toxicity from complementary medicines with specific reference to As, Cd, Pb, and Hg. The future research opportunities mentioned in the conclusion of review will help researchers to explore new avenues, methodologies, and approaches to the issue of heavy metal(loid)s in complementary medicines, thereby generating new regulations and proposing fresh approach towards safe use of these medicines.


Assuntos
Terapias Complementares , Metais Pesados , Arsênio , Disponibilidade Biológica , Cádmio , Humanos , Mercúrio , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Medição de Risco
3.
Chemosphere ; 144: 374-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26383264

RESUMO

Heavy metals such as chromium (Cr) and arsenic (As) occur in ionic form in soil, with chromate [Cr(VI)] and arsenate As(V) being the most pre-dominant forms. The application of biochar to Cr(VI) and As(V) spiked and field contaminated soils was evaluated on the reduction processes [(Cr(VI) to Cr(III)] and [As(V) to As(III))], and subsequent mobility and bioavailability of both As(V) and Cr(VI). The assays used in this study included leaching, soil microbial activity and XPS techniques. The reduction rate of As(V) was lower than that of Cr(VI) with and without biochar addition, however, supplementation with biochar enhanced the reduction process of As(V). Leaching experiments indicated Cr(VI) was more mobile than As(V). Addition of biochar reversed the effect by reducing the mobility of Cr and increasing that of As. The presence of Cr and As in both spiked and contaminated soils reduced microbial activity, but with the addition of biochar to these soils, the microbial activity increased in the Cr(VI) contaminated soils, while it was further decreased with As(V) contaminated soils. The addition of biochar was effective in mitigating Cr toxicity by reducing Cr(VI) to Cr(III). In contrast, the conversion process of As(V) to As(III) hastened by biochar was not favourable, as As(III) is more toxic in soils. Overall, the presence of functional groups on biochar promotes reduction by providing the electrons required for reduction processes to occur as determined by XPS data.


Assuntos
Arseniatos/metabolismo , Carvão Vegetal/química , Cromatos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Arseniatos/toxicidade , Disponibilidade Biológica , Cromatos/toxicidade , Oxirredução , Poluentes do Solo/toxicidade
4.
J Hazard Mater ; 261: 817-25, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23755844

RESUMO

In farming systems, all the applied phosphorus (P) is not available to plants because they are either adsorbed in soil or lost to the environment through leaching or runoff. The effect of coal combustion products (CCPs) for enhancing the bioavailability of applied phosphorus (P) in soil was examined separately for inorganic (KH2PO4 - PP) and organic (poultry manure - PM) P treatments, where fluidised bed combustion (FBC) ash emerged as the most effective amendment. Greenhouse study was conducted by growing mustard plants on FBC amended soils under leaching and non-leaching setups. The FBC increased the biomass yield for organic P treatments in the first crop and increased for both inorganic and organic P in the second cropping. The increase in cumulative yield was highest in leached PP and unleached PM treatments. Field experiment assessed the effectiveness of FBC on inorganic (single super phosphate - SSP) and organic P (biosolids - BS) uptake by mustard and sunflower plants. In the first cropping, the yield was higher in crops treated with SSP alone. In the second crop, yields were higher in the presence than absence of FBC, as reflected by the high relative agronomic effectiveness (RAE) exhibited by BS+FBC (462%) combination. Overall, FBC used in these experiments enhanced bioavailability of P in soil through adsorption and mineralisation of inorganic and organic P, respectively as evident from phosphatase activity and Olsen P relationship. Hence the differential effect of CCPs has not only decreased the loss of applied P (from inorganic and organic sources) to the environment, but also enhanced the P bioavailability in the soil. Among the three CCPs used in the preliminary experiments, FBC proved to perform better than the other two and hence can be recommended for agricultural and environmental applications targeting P issues.


Assuntos
Brassica/metabolismo , Cinza de Carvão/química , Helianthus/metabolismo , Fósforo/química , Fósforo/metabolismo , Disponibilidade Biológica , Brassica/crescimento & desenvolvimento , Helianthus/crescimento & desenvolvimento
5.
Sci Total Environ ; 463-464: 1154-62, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23639210

RESUMO

Phosphorus (P) influences arsenic (As) mobility and bioavailability which depends on the charge components of soil. The objective of this study was to examine P-As interaction in variable-charge allophanic soils in relation to P-induced As mobilization and bioavailability. In this work, the effect of P on arsenate [As(V)] adsorption and desorption was examined using a number of allophanic and non-allophanic soils which vary in their anion adsorption capacity. The effect of P on As uptake by Indian mustard (Brassica juncea L.) plants was examined using a solution culture, and a soil plant growth experiment involving two As-spiked allophanic and non-allophanic soils which vary in their anion adsorption capacity, and a field As-contaminated sheep dip soil. Arsenate adsorption increased with an increase in the anion adsorption capacity of soils. The addition of P resulted in an increase in As desorption, and the effect was more pronounced in the case of allophanic soil. In the case of both As-spiked soils and field contaminated sheep-dip soil, application of P increased the desorption of As, thereby increasing its bioavailability. The effect of P on As uptake was more pronounced in the high anion adsorbing allophanic than low adsorbing non-allophanic soil. In the case of solution culture, As phytoavailability decreased with increasing concentration of P which is attributed to the competition of P for As uptake by roots. While increasing P concentration in solution decreased the uptake of As, it facilitated the translocation of As from root to shoot. The net effect of P on As phytoavailability in soils depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The P-induced mobilization of As could be employed in the phytoremediation of As-contaminated sites. However, care must be taken to minimize the leaching of As mobilized through the P-induced desorption, thereby resulting in groundwater and off site contamination.


Assuntos
Arsênio/química , Fósforo/química , Solo/química , Arseniatos/análise , Arseniatos/química , Arseniatos/farmacocinética , Arsênio/análise , Arsênio/farmacocinética , Disponibilidade Biológica , Brassica/química , Brassica/metabolismo , Germinação/efeitos dos fármacos , Fósforo/análise , Fósforo/farmacocinética , Raízes de Plantas/química , Brotos de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA