Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Chem ; 106: 107933, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536229

RESUMO

This study aims to investigate the potential therapeutic application of Ixeridium dentatum (ID) in treating atopic dermatitis (AD) through network pharmacology, molecular docking, and molecular dynamic simulation. We employed GC-MS techniques and identified 40 bioactive compounds present in the ID and determined their targets by accessing public databases. The convergence of compounds and dermatitis related targets led to the identification of 32 common genes. Among them, IL1B, PTGS2, IL6, IL2, and RELA, were found to be significant targets which were analyzed using Cytoscape network topology. The KEGG pathway evaluation revealed that these targets were significantly enriched in the C-type lectin receptor signaling pathway. The therapeutic efficacy of Stigmasta-5,22-dien-3-ol, Urea, n-Heptyl-, and 3-Epimoretenol was demonstrated in molecular docking assay, as evidenced by their presence in the core compounds of the compound-target network. Furthermore, these compounds exhibited significant kinetic stability and chemical reactivity in DFT quantum analysis when compared to their co-crystallized ligands and reference drug, indicating their potential as key targets for future research. Among the top three docking complexes, namely IL6-3-Epimoretenol, and IL2- Stigmasta-5,22-dien-3-ol, both demonstrated exceptional dynamic characteristics in molecular dynamics simulations at 100 ns. The feasibility of these compounds could be attributed to the prior traditional interrelationship between ID and AD. Overall, this research elucidates the interplay between AD-associated signaling pathways and target receptors with the bioactive ID. The proposal posits the utilization of antecedent compounds as a substitute for the customary pharmaceutical intervention that obstructs the discharge of cytokines, which incite dermal inflammation in the C-type lectin receptor signaling pathway of atopic dermatitis.


Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Humanos , Dermatite Atópica/tratamento farmacológico , Interleucina-2 , Interleucina-6 , Simulação de Acoplamento Molecular , Lectinas Tipo C
2.
Life (Basel) ; 12(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35207564

RESUMO

Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein-protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein-protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM.

3.
Curr Issues Mol Biol ; 43(2): 434-456, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206443

RESUMO

Molineria capitulata is an ornamental plant that has traditionally been used to treat several chronic diseases. The present study was designed to examine the antioxidant, cytotoxic, thrombolytic, anti-inflammatory, and analgesic activities of a methanolic extract of M. capitulata leaves (MEMC) using both experimental and computational models. Previously established protocols were used to perform qualitative and quantitative phytochemical screening in MEMC. A computational study, including molecular docking and ADME/T analyses, was performed. The quantitative phytochemical analysis revealed the total phenolic and flavonoid contents as 148.67 and 24 mg/g, respectively. Antioxidant activity was assessed by examining the reducing power of MEMC, resulting in absorbance of 1.87 at 400 µg/mL, demonstrating a strong reduction capacity. The extract exhibited significant protection against blood clotting and showed the highest protein denaturation inhibition at 500 µg/mL. In both the acetic acid-induced writhing and formalin-induced paw-licking models, MEMC resulted in significant potential pain inhibition in mice. In the computational analysis, 4-hydroxybenzaldehyde, orcinol glucoside, curcapital, crassifogenin C, and 2,6-dimethoxy-benzoic acid displayed a strong predictive binding affinity against the respective receptors. These findings indicated that M. capitulata possesses significant pharmacological activities to an extent supported by computational studies.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Hypoxidaceae/química , Animais , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade
4.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126608

RESUMO

Tetrastigma leucostaphylum (TL) is an important ethnic medicine of Bangladesh used to treat diarrhea and dysentery. Hence, current study has been designed to characterize the antidiarrheal (in vivo) and cytotoxic (in vitro) effects of T. leucostaphylum. A crude extract was prepared with methanol (MTL) and further partitioned into n-hexane (NTL), dichloromethane (DTL), and n-butanol (BTL) fractions. Antidiarrheal activity was investigated using castor oil induced diarrhea, enteropooling, and gastrointestinal transit models, while cytotoxicity was evaluated using the brine shrimp lethality bioassay. In antidiarrheal experiments, all doses (100, 200, and 400 mg/kg) of the DTL extract significantly reduced diarrheal stool frequency, volume and weight of intestinal contents, and gastrointestinal motility in mice. Similarly, in the cytotoxicity assay, all extracts exhibited activity, with the DTL extract the most potent (LC50 67.23 µg/mL). GC-MS analysis of the DTL extract identified 10 compounds, which showed good binding affinity toward M3 muscarinic acetylcholine, 5-HT3, Gut inhibitory phosphodiesterase, DNA polymerase III subunit alpha, and UDP-N-acetylglucosamine-1 carboxyvinyltransferase enzyme targets upon molecular docking analysis. Although ADME/T analyses predicted the drug-likeness and likely safety upon consumption of these bioactive compounds, significant toxicity concerns are evident due to the presence of the known phytotoxin, 2,4-di-tert-butylphenol. In summary, T. leucostaphylum showed promising activity, helping to rationalize the ethnomedicinal use and importance of this plant, its safety profile following both acute and chronic exposure warrants further investigation.


Assuntos
Antidiarreicos/farmacologia , Medicina Tradicional , Extratos Vegetais/farmacologia , Folhas de Planta/química , Solventes/química , Vitaceae/química , Animais , Antidiarreicos/metabolismo , Antidiarreicos/uso terapêutico , Motilidade Gastrointestinal/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA