Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 15(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38004225

RESUMO

Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Insaturados , Ácidos Graxos , Aterosclerose/tratamento farmacológico
2.
Front Pharmacol ; 13: 1013692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204233

RESUMO

Amygdalin is a naturally occurring glycoside used in traditional Chinese medicine and is known to have anti-cancer properties. Even though the anti-cancer properties of amygdalin are well known, its effect on normal cells has not been thoroughly investigated. The aim of the present study was to investigate a possible chemo-protective role of amygdalin against the cytotoxic effects of chemotherapy for normal human cells. Specifically, it was tested in combination with a strong chemotherapeutic drug cisplatin. Human non-tumorigenic MCF12F epithelial cell line, human fibroblasts cells, human breast cancer MCF7 and MDA-MB-231 cells were treated with cisplatin in a dose- and time-depended manner in the absence or presence of amygdalin. When MCF12F cells and fibroblasts underwent pre-treatment with amygdalin followed by cisplatin treatment (24 h amygdalin + 24 h cisplatin), the cell viability was increased (22%, p < 0.001) as indicated using MTT assay. As attested by flow cytometry, combination treatment was associated with decreased the percentage of late apoptotic cells compared with monotherapy (fold-change of decrease = 1.6 and 4.5 for 15 and 20 µΜ, respectively). Also, the proteins expression of PUMA, p53, phospho-p53 and Bax decreased, when a combination treatment was used vs. cisplatin alone, while the proapoptotic proteins Bcl-2 and Bcl-xL exhibited an increased tendency in the presence of amygdalin. Moreover, the levels of pro-apoptotic genes PUMA, p53, and BAX mRNA were significantly downregulated (∼83%, ∼66%, and ∼44%, respectively) vs. cisplatin alone, while the mRNA levels of anti-apoptotic genes BCl-2 and Bcl-XL were upregulated (∼44.5% and ∼51%, respectively), vs. cisplatin alone after 24 h of combination treatment. The study on the Combination index (CI) assay indicated that amygdalin could be possibly considered as an antagonist to cisplatin (2.2 and 2.3) for MCF12F and fibroblast cells, respectively. In contrast, for the breast cancer MCF7 and MDA-MB-231 cells, amygdalin and cisplatin indicated a synergistic effect (0.8 and 0.65), respectively. Our present findings suggest that amygdalin has chemo-modulatory effect when used in co-treatment with cisplatin and is able to protect normal breast cells as well as the fibroblasts during chemotherapy treatment, indicating a strong selective chemoprotective ability and may contribute to a better quality of life for cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA