Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15545, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128337

RESUMO

This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.

2.
J Biomol Struct Dyn ; 41(3): 765-777, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861809

RESUMO

Natural product such as flavonoids and their derivatives have a discernible capability to inhibit tumor formation and the growth of cancer cell, which have a vital link between diet and chronic disease prevention. Several plants and spices that contain flavonoid derivatives have been used in traditional medicine as disease preventative and therapeutic agents. Therefore, flavonoids could be used as chemotherapeutic drugs, indicating their potential clinical utility in cancer treatment. The purpose of this research was to discover and produce innovative pharmaceuticals from natural sources by introducing structural changes into flavonoids' backbones and changing their structures to improve biological activity and anticancer effects. In the current study, it was expected that the percent unbound values for the 15 compounds in human plasma would be low, ranging between 0.188 and 0.391. However, all compounds have a safe range and are not toxic to the brain. Compounds 2, 10, and 13 were shown to be permeable to the CNS (log PS > -3), but all other compounds had difficulty penetrating the CNS. Furthermore, all compounds had a low total clearance, ranging from 0.038 to 1.216 ml/min/kg, indicating that these compounds have a long half-life. None of the compounds caused skin sensitization (SS), and only compounds 1, 11, and 12 are expected to be AMES-positive, suggesting that the other compounds are not mutagenic. The result of the study showed based on the Drug-likeness and ADMET studies, only 3 compounds, including 3, 4, and 15, have a good pharmacokinetics propriety, the lowest toxicity, and good binding affinity towards Caspase 3 V266APDB (ID: 5I9B) as potential inhibitor candidates for the HeLa cell line, they have a low total clearance property and no AMES mutagenicity or hERG inhibition properties. These compounds (3,4,15) were examined to act as new cytotoxic drug candidates and would have an interest as starting point for designing compounds against the HeLa cell line.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , Humanos , Células HeLa , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Simulação de Dinâmica Molecular , Flavonoides
3.
Struct Chem ; 33(5): 1799-1813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505923

RESUMO

In silico studies performed on the metabolites of four Cameroonian medicinal plants with a view to propose potential molecules to fight against COVID-19 were carried out. At first, molecular docking was performed for a set of 84 selected phytochemicals with SARS-CoV-2 main protease (PDB ID: 6lu7) protein. It was further followed by assessing the pharmacokinetics and pharmacological abilities of 15 compounds, which showed low binding energy values. As the screening criteria for their ADMET properties were performed, only two compounds have shown suitable pharmacological properties for human administration which were shortlisted. Furthermore, the stability of binding of these compounds was assessed by performing molecular dynamics (MD) simulations. Based on further analysis through molecular dynamics simulations and reactivity studies, it was concluded that only the Pycnanthuquinone C (17) and the Pycnanthuquinone A (18) extracted from the Pycnanthus angolensis could be considered as candidate inhibitors for targeted protein. Indeed, we expect that these compounds could show excellent in vitro and in vivo activity against SARS-CoV-2. Supplementary information: The online version contains supplementary material available at 10.1007/s11224-022-01939-7.

4.
J Biomol Struct Dyn ; 40(19): 8615-8629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33908318

RESUMO

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic instigated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which changed the daily train of the world's population and cause several dead. Despite the significant efforts made in developing vaccines and therapeutic drugs, there is currently no available effective treatment against this new coronavirus infection, hence the need to continue research which is aimed at limiting the progression of this virus. The present study which has as objective to carry out in silico studies on the metabolites of some Cameroonian medicinal plants of the Asteraceae family with a view to propose potential molecules to fight against COVID-19. The selected plants are commonly used to treat respiratory infectious diseases, and for this reason they may contain some constituents which could exhibit an antiviral activity against SARS-CoV-2. In this work, a set of 74 naturally occurring compounds are computed with SARS-CoV-2 main protease protein (PDB ID: 6lu7) and spike protein (PDB ID: 6m0j) for their affinity and stability using binding energy analysis and molecular docking. Chrysoeriol-7-O-ß-D-glucuronopyranoside (compound 16) has showed promising results including excellent Absorption, Distribution, Metabolism and Excretion (ADME) parameters as well as insignificant toxicity. Finally, the stability of this compound is complex with the two proteins validated through molecular dynamics (MD) simulation, they displayed stable trajectory and molecular properties with consistent interaction profile in molecular dynamics simulations. These findings call for further in vitro and in vivo challenges of phytoconstituents against the COVID-19 as a potential agent to fight the spread of this dramatic pandemic.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Plantas Medicinais , SARS-CoV-2 , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
5.
J Biomol Struct Dyn ; 40(21): 11264-11273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34315340

RESUMO

Main protease (Mpro) of SARS-CoV-2 is a key CoV enzyme that plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-2 the new strain of coronavirus. In this study, we evaluated biologically active compounds present in medicinal plants as potential SARS-CoV-2 Mpro inhibitors, using a molecular docking study with Autodock Vina software. Top seven compounds Afzelin, Phloroglucinol, Myricetin-3-O- rutinosid Tricin 7-neohesperidoside, Silybin, Kaempferol and Silychristin among 50 molecules of natural Origin (Algerian Medicinal plants) were selected which had better and significantly low binding energy as compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8.5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best 7 ligands using the Web server SwissADME. Two of small molecules have been shown to be the ideal candidates for further drug development. Finally, the stability of the both compounds complexed with Mpro was validated through molecular dynamics (MD) simulation, they displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations, moreover, Silybin could form more stable complex with Mpro than Silychristin.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Proteases , SARS-CoV-2 , Silibina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Silibina/farmacologia
6.
Comb Chem High Throughput Screen ; 24(3): 441-454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32748740

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) pandemic continues to threaten patients, societies and healthcare systems around the world. There is an urgent need to search for possible medications. OBJECTIVE: This article intends to use virtual screening and molecular docking methods to find potential inhibitors from existing drugs that can respond to COVID-19. METHODS: To take part in the current research investigation and to define a potential target drug that may protect the world from the pandemic of corona disease, a virtual screening study of 129 approved drugs was carried out which showed that their metabolic characteristics, dosages used, potential efficacy and side effects are clear as they have been approved for treating existing infections. Especially 12 drugs against chronic hepatitis B virus, 37 against chronic hepatitis C virus, 37 against human immunodeficiency virus, 14 anti-herpesvirus, 11 anti-influenza, and 18 other drugs currently on the market were considered for this study. These drugs were then evaluated using virtual screening and molecular docking studies on the active site of the (SARS-CoV-2) main protease (6lu7). Once the efficacy of the drug is determined, it can be approved for its in vitro and in vivo activity against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which can be beneficial for the rapid clinical treatment of patients. These drugs were considered potentially effective against SARS-CoV-2 and those with high molecular docking scores were proposed as novel candidates for repurposing. The N3 inhibitor cocrystallized with protease (6lu7) and the anti-HIV protease inhibitor Lopinavir were used as standards for comparison. RESULTS: The results suggest the effectiveness of Beclabuvir, Nilotinib, Tirilazad, Trametinib and Glecaprevir as potent drugs against SARS-CoV-2 since they tightly bind to its main protease. CONCLUSION: These promising drugs can inhibit the replication of the virus; hence, the repurposing of these compounds is suggested for the treatment of COVID-19. No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA. However, the assessment of these potential inhibitors as clinical drugs requires further in vivo tests of these drugs.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , Antivirais/metabolismo , Sítios de Ligação , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Reposicionamento de Medicamentos , Hepacivirus/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Lopinavir/química , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Piridonas/química , Piridonas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA