Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 10: 600298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552972

RESUMO

Triple negative breast cancer (TNBC) has the worst overall survival among all breast cancer subtypes; 80% of TNBC harbors TP53 mutation. Gambogic acid (GA) is an herbal compound isolated from the dry brownish gamboge resin of Garcinia hanburyi. A new family of biodegradable polymer, the folate (FA)-conjugated arginine-based poly(ester urea urethane)s nanoparticles (FA-Arg-PEUU NP), was developed as nano-carrier for GA. Its anti-TNBC effects and the underlying mechanism of action were examined. The average diameters of FA-Arg-PEUU NP and GA-loaded FA-Arg-PEUU NP (NP-GA) in water are around 165 and 220nm, respectively. Rhodamine-tagged FA-Arg-PEUU NP shows that the conjugation of FA onto Arg-PEUU NPs facilitates the internalization of FA-Arg-PEUU-NP into TNBC. Compared to free-GA at the same GA concentrations, NP-GA exhibits higher cytotoxicity in both TP53-mutated and non-TP53 expressed TNBC cells by increasing intrinsic and extrinsic apoptosis. In HCC1806-bearing xenograft mouse model, the targeted delivery of GA by the FA-Arg-PEUU-NP nano-carriers to the tumor sites results in a more potent anti-TNBC effect and lower toxicity towards normal tissues and organs when compared to free GA. Furthermore, NP-GA also reduces the tumor-associated macrophage (TAM) M1/M2 ratio, suggesting that the use of Arg-based nanoparticles as carriers for GA not only makes the surface of the nanoparticles positively charged, but also confers on to the nanoparticles an ability to modulate TAM polarization. Our data clearly demonstrate that NP-GA exhibits potent anti-TNBC effects with reduced off-target toxicity, which represents novel alternative targeted therapeutics for TNBC treatment.

2.
Acta Biomater ; 84: 114-132, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30508656

RESUMO

The objective of this study is to design a new family of biodegradable synthetic polymeric biomaterials for providing a tunable inhibition of macrophage's nitric oxide synthase (NOS) pathway. l-Arginine (Arg) is the common substrate for NOS and arginase. Both two metabolic pathways participate in the wound healing process. An impaired wound healing, such as diabetic or other chronic wounds is usually associated with an overproduction of NO by macrophages via the NOS pathway. In this study, a new family of l-nitroarginine (NOArg) based polyester amide (NOArg-PEA) and NOArg-Arg PEA copolymers (co-PEA) were designed and synthesized with different composition ratios. The NOArg-PEA and NOArg-Arg co-PEAs are biodegradable (more than 50% degradation in vitro in 4 days at 37 °C), biocompatible and did not activate the resting macrophage immune response per se. When classically activated or alternatively activated macrophages (CAM/AAM) were incubated with NOArg-PEA and NOArg-Arg co-PEAs, the treatments decreased the NO production of CAM, increased the arginase activity in both CAM and AAM, increased TGF-ß1 production of CAM to various degrees and had no significant effect on TNF-α production. Diabetic rat models were used to evaluate the efficacy of NOArg-PEA and NOArg-Arg co-PEAs on wound healing. Diabetic rats treated with 2-NOArg-4 PEA, 2-NOArg-4-Arg-4 20/80, and 2-NOArg-4-Arg-4 50/50 biomaterials achieved 40%-80% faster-wound healing when compared with the control on day 7. The data from the histological and immunohistochemical analysis showed that the 2-NOArg-4-Arg-4 20/80 and 2-NOArg-4-Arg-4 50/50 treatments led to more AAM phenotypes (CD206) and arginase I production in wound tissue than the control during the first 7 days, i.e., suggesting pro-healing wound microenvironment with improved re-epithelialization of wound healing. A similar trend was retained until day 14. The 2-NOArg-4-Arg-4 20/80 and 2-NOArg-4-Arg-4 50/50 treatments also increased the collagen deposition and angiogenesis in the healing wound between day 7 and day 14. Both in vitro and in vivo data of this study showed that this new family of NOArg-Arg co-PEA biomaterials have the potential as viable alternatives for treating impaired wound healing, such as diabetic or other types of chronic wounds. STATEMENT OF SIGNIFICANCE: Diabetic or other chronic wounds is usually associated with an overproduction of NO and pro-inflammatory signals by macrophages. Arginine supplement or NOS inhibitors administration failed to achieve an expected improved wound healing because of the dynamic complexity of arginine catabolism, the difficulty in transition from pro-inflammatory to pro-healing, and the short-term efficacy. We designed and synthesized a new family of water-soluble and degradable nitroarginine-arginine polyester amides to rebalance NOS/arginase metabolism pathways of macrophages. They showed tunable immunomodulating properties in vitro. The in vivo studies were performed to evaluate their efficacy in accelerating the healing. These new biomaterials have the potential as viable alternatives for treating impaired wound healing. The general audience of Acta Biomaterialia should be interested in these findings.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nitroarginina , Poliésteres , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Células 3T3 , Animais , Diabetes Mellitus Experimental/patologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Camundongos , Nitroarginina/química , Nitroarginina/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Ferimentos e Lesões/patologia
3.
Stem Cells Dev ; 27(23): 1605-1620, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215325

RESUMO

Severe burns are some of the most challenging problems in clinics and still lack ideal modalities. Mesenchymal stem cells (MSCs) incorporated with biomaterial coverage of burn wounds may offer a viable solution. In this report, we seeded MSCs to a biodegradable hybrid hydrogel, namely ACgel, that was synthesized from unsaturated arginine-based poly(ester amide) (UArg-PEA) and chitosan derivative. MSC adhered to ACgels. ACgels maintained a high viability of MSCs in culture for 6 days. MSC seeded to ACgels presented well in third-degree burn wounds of mice at 8 days postburn (dpb) after the necrotic full-thickness skin of burn wounds was debrided and filled and covered by MSC-carrying ACgels. MSC-seeded ACgels promoted the closure, reepithelialization, granulation tissue formation, and vascularization of the burn wounds. ACgels alone can also promote vascularization but less effectively compared with MSC-seeded ACgels. The actions of MSC-seeded ACgels or ACgels alone involve the induction of reparative, anti-inflammatory interleukin-10, and M2-like macrophages, as well as the reduction of inflammatory cytokine TNFα and M1-like macrophages at the late inflammatory phase of burn wound healing, which provided the mechanistic insights associated with inflammation and macrophages in burn wounds. For the studied regimens of these treatments, no toxicity was identified to MSCs or mice. Our results indicate that MSC-seeded ACgels have potential use as a novel adjuvant therapy for severe burns to complement commonly used skin grafting and, thus, minimize the downsides of grafting.


Assuntos
Queimaduras/tratamento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Amidas/química , Animais , Arginina/química , Plásticos Biodegradáveis/farmacologia , Queimaduras/patologia , Quitosana/química , Quitosana/farmacologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Alicerces Teciduais/química , Cicatrização
4.
J Biomed Mater Res A ; 105(5): 1487-1499, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27997760

RESUMO

Photodynamic therapy (PDT), which enables the localized therapeutic effect by light irradiation, provides an alternative and complementary modality for the treatment of tumor. However, the aggregation of photosensitizers in acidic microenvironment of tumor and the non-targeted distribution of photosensitizers in normal tissues significantly affect the PDT efficiency. In this study, we developed a biodegradable nanocomplex HA-Arg-PEA from hyaluronic acid (HA) and arginine based poly(ester amide)s (Arg-PEA) as the nanocarrier for chlorin e6 (Ce6). HA enhanced the tumor-specific endocytosis mediated by the overexpression of CD44 receptor. Arg-PEA not only provide electrostatic interaction with HA to form self-assembled nanostructure, but also improve the monomerization of Ce6 at physiological pH as well as mildly acidic pH. The biodegradable characteristic of HA-Arg-PEA nanocomplex enabled the intracellular delivery of Ce6, in which its release and generation of singlet oxygen can be accelerated by enzymatic degradation of the carrier. The in vitro PDT efficiency of Ce6-loaded HA-Arg-PEA nanocomplex was examined in CD44 positive MDA-MB-435/MDR multidrug resistant melanoma cells. CD44-mediated uptake of Ce6-loaded HA-Arg-PEA nanocomplex significantly improved Ce6 level in MDA-MB-435/MDR cells within short incubation time, and the PDT efficiency in inhibiting multidrug resistant tumor cells was also enhanced at higher Ce6 concentrations. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1487-1499, 2017.


Assuntos
Plásticos Biodegradáveis , Portadores de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácido Hialurônico , Melanoma/tratamento farmacológico , Fármacos Fotossensibilizantes , Poliésteres , Arginina/química , Arginina/farmacocinética , Arginina/farmacologia , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacocinética , Plásticos Biodegradáveis/farmacologia , Linhagem Celular Tumoral , Clorofilídeos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologia
5.
Acta Biomater ; 10(6): 2482-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24530559

RESUMO

An advanced family of biodegradable cationic hybrid hydrogels was designed and fabricated from two precursors via a UV photocrosslinking in an aqueous medium: unsaturated arginine (Arg)-based functional poly(ester amide) (Arg-UPEA) and glycidyl methacrylate chitosan (GMA-chitosan). These Arg-UPEA/GMA-chitosan hybrid hydrogels were characterized in terms of their chemical structure, equilibrium swelling ratio (Qeq), compressive modulus, interior morphology and biodegradation properties. Lysozyme effectively accelerated the biodegradation of the hybrid hydrogels. The mixture of both precursors in an aqueous solution showed near non-cytotoxicity toward porcine aortic valve smooth muscle cells at total concentrations up to 6mgml(-1). The live/dead assay data showed that 3T3 fibroblasts were able to attach and grow on the hybrid hydrogel and pure GMA-chitosan hydrogel well. Arg-UPEA/GMA-chitosan hybrid hydrogels activated both TNF-α and NO production by RAW 264.7 macrophages, and the arginase activity was also elevated. The integration of the biodegradable Arg-UPEA into the GMA-chitosan can provide advantages in terms of elevated and balanced NO production and arginase activity that free Arg supplement could not achieve. The hybrid hydrogels may have potential application as a wound healing accelerator.


Assuntos
Amidas/química , Arginina/química , Hidrogéis , Poliésteres/química , Polissacarídeos/química , Animais , Linhagem Celular , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , Óxido Nítrico/biossíntese , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Fator de Necrose Tumoral alfa/biossíntese
6.
J Mater Sci Mater Med ; 22(3): 469-79, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21287243

RESUMO

A family of water soluble and positively charged L-arginine based poly(ester amide)s (Arg-PEAs) was synthesized and characterized. These biodegradable polymers consist of three nontoxic building blocks: L-arginine, diols, and dicarboxylic acids. The Arg-PEAs were prepared by solution polycondensation reaction of tetra-p-toluenesulfonic acids salts of bis-(L-arginine) α, ω-alkylene diesters and di-p-nitrophenyl esters of dicarboxylic acids. Optimal conditions of the monomers and polymers synthesis were investigated, and the monomers and Arg-PEAs were chemically characterized. Arg-PEAs were found to have good solubility in water and many other polar solvents. Structure-function relationship of the Arg-PEAs revealed that changing the number of methylene groups in the diol or/and diacid segment could finely tune the hydrophobic and cationic properties of the Arg-PEAs. MTT assay showed that all the prepared Arg-PEAs were non-toxic to the cell lines even at very large doses. Arg-PEAs with double bond functionality could be photo-crosslinked with polyethylene glycol diacrylate to form cationic hybrid hydrogels.


Assuntos
Amidas/química , Materiais Biocompatíveis/química , Íons , Poliésteres/química , Água/química , Animais , Ácidos Carboxílicos/química , DNA/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Miócitos de Músculo Liso/citologia , Polímeros/química , Ratos , Solubilidade , Solventes/química , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA