Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(3): 1164-1178, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36417103

RESUMO

Inflammation has been associated with numerous neurological disorders. Inflammatory environments trigger a series of cellular and physiological alterations in the brain. However, how inflammatory milieu affects neuronal physiology and how neuronal alterations progress in the inflammatory environments are not fully understood. In this study, we examined the effects of pro-inflammatory milieu on mitochondrial functions and neuronal activities in the hypothalamic POMC neurons. Treating mHypoA-POMC/GFP1 with the conditioned medium collected from LPS activated macrophage were employed to mimic the inflammatory milieu during hypothalamic inflammation. After a 24-h treatment, intracellular ROS/RNS levels were elevated, and the antioxidant enzymes were reduced. Mitochondrial respiration and mitochondrial functions, including basal respiratory rate, spared respiration capacity, and maximal respiration, were all significantly compromised by inflammatory milieu. Moreover, pro-inflammatory cytokines altered mitochondrial dynamics in a time-dependent manner, resulting in the elongation of mitochondria in POMC neurons after a 24-h treatment. Additionally, the increase of C-Fos and Pomc genes expression indicated that the neurons were activated upon the stimulation of inflammatory environment. This neuronal activation of were confirmed on the LPS-challenged mice. Collectively, a short-term to midterm exposure to inflammatory milieu stimulated metabolic switch and neuronal activation, whereas chronic exposure triggered the elevation of oxidative stress, the decrease of the mitochondrial respiration, and the alterations of mitochondrial dynamics.


Assuntos
Lipopolissacarídeos , Pró-Opiomelanocortina , Camundongos , Animais , Pró-Opiomelanocortina/metabolismo , Lipopolissacarídeos/farmacologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Inflamação/metabolismo
2.
J Neurochem ; 115(2): 325-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20649837

RESUMO

This report demonstrates that a repeated 'challenge' high-dose methamphetamine (METH) injection regimen rapidly decreases striatal K(+)-stimulated dopamine (DA) release concurrent with decreases in both synaptosomal membrane-associated (referred to herein as membrane-associated) and previously reported decreases in non-synaptosomal membrane-associated (presumably cytoplasmic) vesicular DA uptake and content. Resembling previously reported effects involving cytoplasmic vesicles wherein uptake was decreased 48 h after treatment, the decrease in membrane-associated uptake persisted 72 h. Cytoplasmic and membrane-associated vesicular DA uptakes were decreased 7 days after the challenge regimen. A single METH injection also rapidly decreased K(+)-stimulated DA release, membrane-associated DA content, and membrane-associated DA uptake; however, unlike after the challenge regimen, the decrease in uptake recovered by 24 h. Pre-treatment with the D(2) receptor antagonist, eticlopride, did not attenuate the decrease in membrane-associated uptake as assessed 1 h after either a single or challenge treatment. However, eticlopride attenuated the decrease in membrane-associated uptake caused by the challenge regimen as assessed 24 h later. These data reveal complex effects of METH on vesicular function that vary according to the vesicle population under study, dosing regimen, and time after treatment. These may contribute to both the decrease in K(+)-stimulated DA release and the persistent dopaminergic deficits caused by METH.


Assuntos
Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Metanfetamina/farmacologia , Potássio/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/ultraestrutura , Antagonistas de Dopamina/farmacologia , Interações Medicamentosas , Masculino , Ratos , Ratos Sprague-Dawley , Salicilamidas/farmacologia , Frações Subcelulares/efeitos dos fármacos , Fatores de Tempo
3.
Eur J Pharmacol ; 590(1-3): 105-10, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18599036

RESUMO

Multiple high-dose methamphetamine administrations cause long-lasting (>1 week) deficits in striatal dopaminergic neuronal function. This stimulant likewise causes rapid (within 1 h) and persistent (at least 48 h) decreases in activities of striatal: 1) dopamine transporters, as assessed in synaptosomes; and 2) vesicular monoamine transporter -2 (VMAT-2), as assessed in a non-membrane-associated (referred to herein as cytoplasmic) vesicular subcellular fraction. Importantly, not all brain areas are vulnerable to methamphetamine-induced long-lasting deficits. Similarly, the present study indicates that methamphetamine exerts differential acute effects on monoaminergic transporters according to brain region. In particular, results revealed that in the nucleus accumbens, methamphetamine rapidly, but reversibly (within 24 h), decreased plasmalemmal dopamine transporter function, without effect on plasmalemmal dopamine transporter immunoreactivity. Methamphetamine also rapidly and reversibly (within 48 h) decreased cytoplasmic VMAT-2 function in this region, with relatively little effect on cytoplasmic VMAT-2 immunoreactivity. In contrast, methamphetamine did not alter either dopamine transporter or VMAT-2 activity in the hypothalamus. Noteworthy, the nucleus accumbens and hypothalamus did not display the persistent long-lasting striatal dopamine depletions caused by the stimulant. Taken together, these data suggest that deficits in plasmalemmal and vesicular monoamine transporter activity lasting greater than 24-48 h may be linked to the long-lasting dopaminergic deficits caused by methamphetamine and appear to be region specific.


Assuntos
Dopamina/metabolismo , Metanfetamina/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/análise , Animais , Transporte Biológico/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Vesiculares de Transporte de Monoamina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA