Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279345

RESUMO

The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.


Assuntos
Acetatos , Arachis , Melanoma , Humanos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Apoptose , Autofagia
2.
J Cachexia Sarcopenia Muscle ; 13(4): 2073-2087, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718751

RESUMO

BACKGROUND: Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. METHODS: We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. RESULTS: Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 µg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. CONCLUSIONS: All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Adenocarcinoma/patologia , Animais , Caquexia/etiologia , Caquexia/genética , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Interleucina-6 , Medicina Tradicional Chinesa , Camundongos , Atrofia Muscular/patologia
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163281

RESUMO

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Assuntos
Isoflavonas/farmacologia , Melaninas/metabolismo , Animais , Astragalus propinquus/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Isoflavonas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , alfa-MSH/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Sci Rep ; 6: 22419, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926586

RESUMO

The antitumor activity of 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 µM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Triterpenos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Histona Desacetilases/biossíntese , Humanos , Células MCF-7 , Momordica charantia/metabolismo , NF-kappa B/metabolismo , PPAR gama/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Preparações de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA