Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 253: 121264, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335842

RESUMO

Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.


Assuntos
Desinfetantes , Água Potável , Sulfitos , Tiossulfatos , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Cloro/análise , Desinfetantes/análise , Halogênios/análise , Desinfecção , Cloretos , Ácido Ascórbico/análise , Poluentes Químicos da Água/análise , Halogenação
2.
Water Res ; 184: 116148, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32698091

RESUMO

Disinfection by-products (DBPs) are associated with various adverse health effects. Diversiform advanced treatment processes have been applied for the control of DBPs, but DBPs can still be frequently detected in tap water. Tea-leaves can be made into popular beverage and is itself a porous bio-adsorbent. By simulating tea brewing process, this study evaluated the removal of DBPs from drinking water during the tea brewing process. Removal of four trihalomethanes (THMs) and four haloacetamides (HAMs) by different fermentation degree tea-leaves was investigated. Little DBPs were removed by unfermented and semi-fermented tea-leaves (i.e., Meitan turquoise bud and Dahongpao tea) with less than 5% removal of HAMs, whereas 40% HAMs can be removed by fermented tea (i.e., Jinjunmei tea and Shuixian tea). Tea soup is neutral and slightly acidic, so little DBP hydrolysis was observed under typical tea-leaf brewing process. DBPs were mainly removed by volatilization and adsorption during tea brewing. Removal difference caused by DBP volatilization is very small. The DBP removal difference of four kinds of tea-leaves may be caused by fermentation degree. The surface of unfermented Meitan turquoise bud had a smooth and regular morphology, whereas a rough, irregular, hollow and spongy surface of fermented tea (i.e., Jinjunmei and Shuixian tea) was observed. Generally, the higher the degree of tea fermentation, the more adsorption sites, and the more removal of DBPs. Finally, the model, which takes the DBP initial concentration, tea-leaf dose and brewing time into account, was established under the experimental conditions to predict the variation of DBP concentration during tea brewing, and suggestions for DBP removal were provided to reduce DBP exposure risk. The integrated toxic risk during tea brewing was also investigated, and about 30% integrated cytotoxicity and 26% genotoxicity was reduced during Jinjunmei and Shuixian tea-leaf brewing.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfecção , Cinética , Chá , Trialometanos , Poluentes Químicos da Água/análise
3.
J Environ Sci (China) ; 24(7): 1204-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23513440

RESUMO

This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroacetonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 microg/L detected vs. 20 microg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTP.


Assuntos
Desinfecção , Halogenação , Hidrocarbonetos Halogenados/análise , Compostos de Nitrogênio/análise , Poluentes Químicos da Água/análise , China , Rios/química , Compostos Orgânicos Voláteis/análise , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA