Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Biol ; 49(12): 1257-64, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21846199

RESUMO

CONTEXT: In utilization of Alpinia zerumbet (Pers.) Burtt and Smith (Zingiberaceae) (AZ), usually the angiocarps are discarded without further use. OBJECTIVE: We speculate whether the angiocarps could show hypolipidemic effect. METHODS AND METHODS: Several diets were prepared: Alpinia seed powder (ASP); Alpinia seed powder/husk (ASH): 40/60; and Alpinia seed essential oil (ASO): 0.01-0.10%. Sprague-Dawley rats divided into 11 groups were fed these diets for 8 weeks and tested for the hypolipidemic bioactivity. RESULTS: The fecal neutral cholesterol excretion was increased, and the serum total triglyceride (TG) was significantly reduced from 153.7 mg/dL in the high-fat group (H) to 114.3-119.8 mg/dL by ASO; to 116.3-147.9 mg/dL by ASP; and to 116.2-145.3 mg/dL by ASH. Activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were almost unaffected. The high-density lipoprotein (HDL) levels were mostly raised by ASO to 180.3-200.8 mg/dL. The lowdensity lipoprotein (LDL) levels were mostly reduced to 66.8-82.6 mg/dL by ASH. The level of arachidonic acid was mostly raised to 0.50-0.60% by ASO, compared with 0.37% of group H. More importantly, the significant reduction in hepatic TG and total cholesterol (TC) implicated a crucial liver protective effect. DISCUSSION AND CONCLUSION: ASP and ASH consisted of high crude-fiber content, while ASO consisted of seed essential oil. Both the seed essential oil and the whole powder of AZ previously had been reported to possess potent hypolipidemic bioactivity. Conclusively, the hypolipidemic effect can be attributed to the combined effect of the essential oil and the crude fiber.


Assuntos
Alpinia/química , Frutas/química , Hipolipemiantes/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colesterol/sangue , Colesterol/química , Cricetinae , Dieta , Medicamentos de Ervas Chinesas , Ácidos Graxos/metabolismo , Fezes/química , Cromatografia Gasosa-Espectrometria de Massas , Glutationa Peroxidase/análise , Hidrólise , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mesocricetus , Metilação , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Sementes/química , Superóxido Dismutase/análise
2.
J Agric Food Chem ; 59(6): 2663-71, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21361295

RESUMO

Obesity plays a critical role in dyslipidemia and related disorders. Mulberry water extracts (MWEs) contain polyphenols, including gallic acid, chlorogenic acid, rutin, and anthocyanins. In this study, using 6-week-old male hamsters, we investigated the anti-obese effect of MWEs. After 12 weeks of treatment, MWEs lowered high-fat diet (HFD)-induced body weight and visceral fat, accompanied with hypolipidemic effects by reducing serum triacylglycerol, cholesterol, free fatty acid, and the low-density lipoprotein (LDL)/high-density lipoprotein (HDL) ratio (n=8 for each group). MWEs decreased hepatic lipids, thus protected livers from impairment. The hepatic peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1 were elevated, while fatty acid synthase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase were reduced by MWEs, indicating that MWEs regulated lipogenesis and lipolysis, which exerted the anti-obese and hypolipidemic effects. Noticeably, MWEs showed both efficacy and safety in vivo. In concluson, MWEs can be used to reduce body weight, serum, and liver lipids.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/metabolismo , Morus/química , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Cricetinae , Modelos Animais de Doenças , Humanos , Fígado/efeitos dos fármacos , Masculino , Mesocricetus , Obesidade/metabolismo
3.
Pharm Biol ; 48(1): 23-31, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20645752

RESUMO

Guava [Psidium guajava L. (Myrtaceae)] budding leaf extract (PE) has shown tremendous bioactivities. Previously, we found seven major compounds in PE, i.e., gallic acid, catechin, epicatechin, rutin, quercetin, naringenin, and kaempferol. PE showed a potentially active antiglycative effect in an LDL (low density lipoprotein) mimic biomodel, which can be attributed to its large content of polyphenolics. The glycation and antiglycative reactions showed characteristic distinct four-phase kinetic patterns. In the presence of PE, the kinetic coefficients were 0.000438, 0.000060, 0.000, and -0.0001354 ABS-mL/mg-min, respectively, for phases 1 to 4. Computer simulation evidenced the dose-dependent inhibition model. Conclusively, PE contains a large amount of polyphenolics, whose antiglycative bioactivity fits the inhibition model.


Assuntos
Flavonoides/farmacocinética , Lipoproteínas LDL/antagonistas & inibidores , Modelos Biológicos , Fenóis/farmacocinética , Extratos Vegetais/farmacocinética , Psidium , Água/metabolismo , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Flavonoides/isolamento & purificação , Produtos Finais de Glicação Avançada , Glicosilação/efeitos dos fármacos , Humanos , Lipoproteínas LDL/metabolismo , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Polifenóis
4.
Pharm Biol ; 48(3): 306-17, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20645818

RESUMO

To find in vivo behaviors of an antioxidant when used as an adjuvant cancer therapy, a more detailed integrated pharmacokinetic scheme is needed. Major reaction parameters associated with the sequential routes from ingestion to decay of an antioxidant were used in mathematical analysis, which included absorption rate coefficient k(a), quenching rate coefficient of the antioxidant k(q1) and tissue quenching rate coefficient k(r). The model was then treated with computer simulation using cited decay rate coefficients and some assumed parameters. When intestinal absorption rate coefficient k(a) becomes larger, retention time of antioxidant in plasma would be prolonged. moreover, k(a) had no effect on either quenching ability of antioxidants or tissue recovering capability. in quenching plasma ROS, the larger the quenching coefficient k(q1), the shorter peak- and the life-times would be for the secondary free radicals that are formed in primary quenching. Conclusively, it is suggestive to prescribe an antioxidant therapy with an appropriate values of k(a) and larger values of k(q1).


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Terapias Complementares , Modelos Biológicos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antioxidantes/química , Carotenoides/sangue , Carotenoides/química , Carotenoides/farmacocinética , Carotenoides/uso terapêutico , Simulação por Computador , Suplementos Nutricionais , Meia-Vida , Humanos , Absorção Intestinal , Licopeno , Manitol/sangue , Manitol/química , Manitol/farmacocinética , Manitol/uso terapêutico , Neoplasias/sangue , Espécies Reativas de Oxigênio/sangue , Espécies Reativas de Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA