Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577098

RESUMO

Our skin is continuously exposed to different amphiphilic substances capable of interaction with its lipids and proteins. We describe the effect of a saponin-rich soapwort extract and of four commonly employed synthetic surfactants: sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES), ammonium lauryl sulfate (ALS), cocamidopropyl betaine (CAPB) on different human skin models. Two human skin cell lines were employed: normal keratinocytes (HaCaT) and human melanoma cells (A375). The liposomes consisting of a dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3, mimicking the cell membrane of keratinocytes and melanoma cells were employed as the second model. Using dynamic light scattering (DLS), the particle size distribution of liposomes was analyzed before and after contact with the tested (bio)surfactants. The results, supplemented by the protein solubilization tests (albumin denaturation test, zein test) and oil emulsification capacity (using olive oil and engine oil), showed that the soapwort extract affects the skin models to a clearly different extent than any of the tested synthetic surfactants. Its protein and lipid solubilizing potential are much smaller than for the three anionic surfactants (SLS, ALS, SLES). In terms of protein solubilization potential, the soapwort extract is comparable to CAPB, which, however, is much harsher to lipids.


Assuntos
Biomimética/métodos , Extratos Vegetais/química , Saponaria/química , Pele/efeitos dos fármacos , Tensoativos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Betaína/análogos & derivados , Betaína/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Emulsificantes/química , Humanos , Concentração de Íons de Hidrogênio , Queratinócitos/efeitos dos fármacos , Lipossomos/química , Modelos Biológicos , Tamanho da Partícula , Saponinas/química , Dodecilsulfato de Sódio/análogos & derivados , Dodecilsulfato de Sódio/química , Triterpenos/química , Zeína/química
2.
Mater Sci Eng C Mater Biol Appl ; 98: 874-886, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813093

RESUMO

Photothermal therapy (PTT) has shown significant potential for anti-cancer modality. In this report, according to our best knowledge, we explore for the first time Ti2C-based MXene as a novel, highly efficient and selective agent for photothermal therapy (PTT). Ti2C superficially modified with PEG was obtained from the layered, commercially available Ti2AlC MAX phase in the process of etching aluminum layers using concentrated HF, and characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HREM) as well as X-ray photoelectron spectroscopy for chemical analysis (ESCA-XPS). The PEG-coated Ti2C flakes showed a satisfactory photothermal conversion efficacy (PTCE) and good biocompatibility in wide range of the tested concentrations. Through in vitro studies, the PEG-modified Ti2C demonstrated notable NIR-induced ability to cancerous cells' ablation with minimal impact on non-malignant cells up to the concentration of 37.5 µg mL-1. The applied doses of Ti2C_PEG in our work were even 24 times lower comparing other MXene-based photothermal agents. This work is expected to expand the utility of 2D MXenes to biomedical applications through the development of entirely novel agents for photothermal therapy. This work is expected to expand the utility of 2D MXenes to biomedical applications through the development of entirely novel agents for photothermal therapy.


Assuntos
Hipertermia Induzida , Fototerapia , Titânio/química , Morte Celular , Linhagem Celular Tumoral , Humanos , Espectroscopia Fotoeletrônica , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Temperatura
3.
Biosens Bioelectron ; 51: 55-61, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23932980

RESUMO

The viability of cells cultured in microsystems for drug screening purposes is usually tested with a variety of colorimetric/fluorescent methods. In this work we propose an alternative way of assessing cell viability-flow-through sensor array that can be connected in series with cell microbioreactors as compatible detection system. It is shown, that the presented device is capable of cytotoxic effect detection and estimation of cell viability after treatment with 1,4-dioxane and 5-fluorouracil, which proves that it can be used for truly non-invasive, fast, reliable, continuous cell culture monitoring in microscale.


Assuntos
Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Antimetabólitos Antineoplásicos/farmacologia , Técnicas Biossensoriais/instrumentação , Linhagem Celular Tumoral , Dioxanos/farmacologia , Desenho de Equipamento , Fluoruracila/farmacologia , Humanos
4.
Biosens Bioelectron ; 40(1): 68-74, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22770829

RESUMO

In this work, we present a microfluidic array of microwells for long-term tumor spheroid cultivation and anticancer drug activity evaluation. The three-dimensional microfluidic system was obtained by double casting of poly(dimethylsiloxane). Spheroids of HT-29 human carcinoma cells were cultured in the microsystem for four weeks. After two weeks of the culture growth slowdown and stop were observed and high cell viability was determined within next two weeks. The characteristics of a homeostasis-like state were achieved. A cytostatic drug (5-fluorouracil) was introduced into the microsystem with different frequency (every day or every second day) and different concentrations. The geometry and construction of the microsystem enables flushing away of unaggregated (including dead) cells while viable spheroids remain inside microwells and decreasing spheroid diameter can be observed and measured as an indicator of decreasing cell viability. The results have shown differences in response of spheroids to different concentrations of 5-fluorouracil. It was also observed, that higher frequency of drug dosing resulted in more rapid spheroid diameter decrease. The presented microfluidic system is a solution for cell-based studies in an in vivo-like microfluidic environment. Moreover, observation of decreasing spheroid dimensions is a low-cost, label-free and easy-to-conduct mean of a quantitative determination of a 3D cellular model response to a applied drug. It is suitable for long-term observation of spheroid response, in a contrary to other viability assays requiring termination of a culture.


Assuntos
Antineoplásicos/administração & dosagem , Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias Experimentais/tratamento farmacológico , Análise de Falha de Equipamento , Células HT29 , Humanos , Neoplasias Experimentais/patologia , Sensibilidade e Especificidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA