Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Biol Sci ; 19(13): 4082-4102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705749

RESUMO

Epalrestat, an aldose reductase inhibitor (ARI), has been clinically adopted in treating diabetic neuropathy in China and Japan. Apart from the involvement in diabetic complications, AR has been implicated in inflammation. Here, we seek to investigate the feasibility of clinically approved ARI, epalrestat, for the treatment of rheumatoid arthritis (RA). The mRNA level of AR was markedly upregulated in the peripheral blood mononuclear cells (PBMCs) of RA patients when compared to those of healthy donors. Besides, the disease activity of RA patients is positively correlated with AR expression. Epalrestat significantly suppressed lipopolysaccharide (LPS) induced TNF-α, IL-1ß, and IL-6 in the human RA fibroblast-like synoviocytes (RAFLSs). Unexpectedly, epalrestat treatment alone markedly exaggerated the disease severity in adjuvant induced arthritic (AIA) rats with elevated Th17 cell proportion and increased inflammatory markers, probably resulting from the increased levels of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA). Interestingly, the combined treatment of epalrestat with N-Acetylcysteine (NAC), an anti-oxidant, to AIA rats dramatically suppressed the production of 4-HNE, MDA and inflammatory cytokines, and significantly improved the arthritic condition. Taken together, the anti-arthritic effect of epalrestat was diminished or even overridden by the excessive accumulation of toxic 4-HNE or other reactive aldehydes in AIA rats due to AR inhibition. Co-treatment with NAC significantly reversed epalrestat-induced upregulation of 4-HNE level and potentiated the anti-arthritic effect of epalrestat, suggesting that the combined therapy of epalrestat with NAC may sever as a potential approach in treating RA. Importantly, it could be regarded as a safe intervention for RA patients who need epalrestat for the treatment of diabetic complications.


Assuntos
Acetilcisteína , Artrite Reumatoide , Humanos , Animais , Ratos , Acetilcisteína/uso terapêutico , Leucócitos Mononucleares , Aldeídos , Artrite Reumatoide/tratamento farmacológico
2.
Pharmacol Res ; 192: 106765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075871

RESUMO

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.


Assuntos
Doenças Cardiovasculares , Medicamentos de Ervas Chinesas , Humanos , Antiarrítmicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Canais Iônicos/fisiologia , Arritmias Cardíacas/tratamento farmacológico
3.
Phytomedicine ; 103: 154214, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689902

RESUMO

BACKGROUND: Oxidative stress plays an important role in the pathology of ischemic stroke. Studies have confirmedthat scutellarin has antioxidant effects against ischemic injury, and we also reported that the involvement of Aldose reductase (AR) in oxidative stress and cerebral ischemic injury, in this study we furtherly explicit whether the antioxidant effect of scutellarin on cerebral ischemia injury is related to AR gene regulation and its specific mechanism. METHODS: C57BL/6N mice (Wild-type, WT) and AR knockout (AR-/-) mice suffered from transient middle cerebral artery occlusion (tMCAO) injury (1 h occlusion followed by 3 days reperfusion), and scutellarin was administered from 2 h before surgery to 3 days after surgery. Subsequently, neurological function was assessed by the modified Longa score method, the histopathological morphology observed with 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (Elisa) was used to detect the levels of ROS, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHDG), Neurotrophin-3 (NT-3), poly ADP-ribose polymerase-1 (PARP1) and 3-nitrotyrosine (3-NT) in the ischemic penumbra regions. Quantitative proteomics profiling using quantitative nano-HPLC-MS/MS were performed to compare the protein expression difference between AR-/- and WT mice with or without tMCAO injury. The expression of AR, nicotinamide adenine dinucleotide phosphate oxidases (NOX1, NOX2 and NOX4) in the ipsilateral side of ischemic brain were detected by qRT-PCR, Western blot and immunofluorescence co-staining with NeuN. RESULTS: Scutellarin treatment alleviated brain damage in tMCAO stroke model such as improved neurological function deficit, brain infarct area and neuronal injury and reduced the expression of oxidation-related products, moreover, also down-regulated tMCAO induced AR mRNA and protein expression. In addition, the therapeutic effect of scutellarin on the reduction of cerebral infarction area and neurological function deficits abolished in AR-/- mice under ischemia cerebral injury, which indicated that the effect of scutellarin treatment on tMCAO injury is through regulating AR gene. Proteomic analysis of AR-/- and WT mice indicated AR knockout would affect oxidation reaction even as NADPH related process and activity in mice under cerebral ischemia conditions. Moreover, NOX isoforms (NOX1, NOX2 and NOX4) mRNA and protein expression were significant decreased in neurons of penumbra region in AR-/- mice compared with that in WT mice at 3d after tMCAO injury, which indicated that AR should be the upstream protein regulating NOX after cerebral ischemia. CONCLUSIONS: We first reported that AR directly regulates NOX subtypes (not only NOX2 but also NOX1 and NOX4) after cerebral ischaemic injury. Scutellarin specifically targets the AR-NOX axis and has antioxidant effects in mice with cerebral ischaemic injury, providing a theoretical basis and accurate molecular targets for the clinical application of scutellarin.


Assuntos
Aldeído Redutase , Apigenina , Isquemia Encefálica , Glucuronatos , Infarto da Artéria Cerebral Média , NADPH Oxidase 1 , Estresse Oxidativo , Traumatismo por Reperfusão , Aldeído Redutase/metabolismo , Animais , Antioxidantes/metabolismo , Apigenina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Glucuronatos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Espectrometria de Massas em Tandem
4.
Food Chem ; 387: 132823, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398680

RESUMO

The current study analysed concentrations of furan and its derivatives in coffee products commercially available in China based on an improved headspace gas chromatography-mass spectrometry (HS-GC-MS) method and estimated health risks. A total of 101 samples of coffee products on the Chinese market was analysed. Furan (98%, ND-6569 µg/kg) and 2-methylfuran (100%, 2-29639 µg/kg) were the compounds with the highest concentrations and detection rates in coffee products. The mean dietary exposure of Chinese consumers to furan and the sum of furan, 2-methylfuran and 3-methylfuran in coffee products was 0.09 and 0.46 µg/kg bw/day, respectively. For the neoplastic effects of furan, the margin of exposure (MOE) was 14,556 for the mean dietary exposure of consumers. For the non-neoplastic effects of furan, MOEs were 711 and 139 for furan and the sum of furan, 2-methylfuran and 3-methylfuran, respectively. Overall, a health concern is indicated for coffee consumers with MOEs below 10000.


Assuntos
Café , Furanos , China , Café/química , Furanos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos
5.
Pharmacol Res ; 172: 105820, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403732

RESUMO

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/química , Produtos Biológicos/química , Tratamento Farmacológico da COVID-19 , Inibidores Enzimáticos/química , SARS-CoV-2/enzimologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Antivirais/farmacologia , Ligação Competitiva , Produtos Biológicos/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Chalconas/farmacologia , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ginsenosídeos/farmacologia , Humanos , Interferometria , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Fenóis/farmacologia , Ligação Proteica
6.
Pharmacol Res ; 170: 105697, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062240

RESUMO

With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Complemento C3/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polygala , Saponinas/farmacologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Longevidade/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Polygala/química , Saponinas/isolamento & purificação , Memória Espacial/efeitos dos fármacos , Transcriptoma
7.
Pharmacol Res ; 170: 105696, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052360

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Articulações/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antirreumáticos/efeitos adversos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Articulações/imunologia , Articulações/metabolismo , Medicina Tradicional Chinesa
8.
Mol Neurobiol ; 56(8): 5626-5642, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30659419

RESUMO

Chemotherapy-induced cognitive impairment, also known as "chemobrain," is a common side effect. The purpose of this study was to examine whether ginsenoside Rg1, a ginseng-derived compound, could prevent chemobrain and its underlying mechanisms. A mouse model of chemobrain was developed with three injections of docetaxel, adriamycin, and cyclophosphamide (DAC) in combination at a 2-day interval. Rg1 (5 and 10 mg/kg daily) was given 1 week prior to DAC regimen for 3 weeks. An amount of 10 mg/kg Rg1 significantly improved chemobrain-like behavior in water maze test. In vivo neuroimaging revealed that Rg1 co-treatment reversed DAC-induced decreases in prefrontal and hippocampal neuronal activity and ameliorated cortical neuronal dendritic spine elimination. It normalized DAC-caused abnormalities in the expression of multiple neuroplasticity biomarkers in the two brain regions. Rg1 suppressed DAC-induced elevation of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but increased levels of the anti-inflammatory cytokines IL-4 and IL-10 in multiple sera and brain tissues. Rg1 also modulated cytokine mediators and inhibited DAC-induced microglial polarization from M2 to M1 phenotypes. In in vitro experiments, while impaired viability of PC12 neuroblastic cells and hyperactivation of BV-2 microglial cells, a model of neuroinflammation, were observed in the presence of DAC, Rg1 co-treatment strikingly reduced DAC's neurotoxic effects and neuroinflammatory response. These results indicate that Rg1 exerts its anti-chemobrain effect in an association with the inhibition of neuroinflammation by modulating microglia-mediated cytokines and the related upstream mediators, protecting neuronal activity and promoting neuroplasticity in particular brain regions associated with cognition processing.


Assuntos
Antineoplásicos/efeitos adversos , Encéfalo/patologia , Disfunção Cognitiva/prevenção & controle , Citocinas/metabolismo , Ginsenosídeos/uso terapêutico , Inflamação/tratamento farmacológico , Microglia/patologia , Plasticidade Neuronal , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Comportamento Animal , Biomarcadores/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Citocinas/sangue , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Feminino , Ginsenosídeos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Locomoção/efeitos dos fármacos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Células PC12 , Ratos
9.
Sci Rep ; 7(1): 6238, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740171

RESUMO

Alzheimer's disease (AD) is a degenerative disorder typified by progressive deterioration of memory and the appearance of ß-amyloid peptide (Aß)-rich senile plaques. Recently we have identified a novel function of a patented formulation of modified Huanglian-Jie-Tu-Tang (HLJDT-M), a Chinese herbal medicine, in treating AD in in vitro studies (US patent No. 9,375,457). HLJDT-M is a formulation composed of Rhizoma Coptitis, Cortex Phellodendri and Fructus Gardeniae without Radix Scutellariae. Here, we assessed the efficacy of HLJDT-M on a triple transgenic mouse model of AD (3XTg-AD). Oral administration of HLJDT-M ameliorated the cognitive dysfunction of 3XTg-AD mice and lessened the plaque burden. In addition, biochemical assays revealed a significant decrease in levels of detergent-soluble and acid-soluble Aß via decreasing the levels of full length amyloid-ß precursor protein (FL-APP) and C-terminal fragments of APP (CTFs) in brain lysates of HLJDT-M-treated mice. HLJDT-M treatment also significantly reduced the levels of FL-APP and CTFs in N2a/SweAPP cells. In contrast, treatment using the classical formula HLJDT did not reduce the memory impairment of 3XTg-AD mice and, rather, increased the Aß/Fl-APP/CTFs in both animal and cell culture studies. Altogether, our study indicates that HLJDT-M is a promising herbal formulation to prevent and/or cure AD.


Assuntos
Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/fisiologia , Medicamentos de Ervas Chinesas/química , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacocinética , Placa Amiloide/prevenção & controle , Presenilina-1/fisiologia , Proteínas tau/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Placa Amiloide/etiologia , Placa Amiloide/patologia
10.
PLoS One ; 9(3): e92954, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24671102

RESUMO

Huanglian-Jie-Du-Tang (HLJDT) is a famous traditional Chinese herbal formula that has been widely used clinically to treat cerebral ischemia. Recently, we found that berberine, a major alkaloid compound in HLJDT, reduced amyloid-ß (Aß) accumulation in an Alzheimer's disease (AD) mouse model. In this study, we compared the effects of HLJDT, four single component herbs of HLJDT (Rhizoma coptidis (RC), Radix scutellariae (RS), Cortex phellodendri (CP) and Fructus gardenia (FG)) and the modified formula of HLJDT (HLJDT-M, which is free of RS) on the regulatory processing of amyloid-ß precursor protein (APP) in an in vitro model of AD. Here we show that treatment with HLJDT-M and its components RC, CP, and the main compound berberine on N2a mouse neuroblastoma cells stably expressing human APP with the Swedish mutation (N2a-SwedAPP) significantly decreased the levels of full-length APP, phosphorylated APP at threonine 668, C-terminal fragments of APP, soluble APP (sAPP)-α and sAPPß-Swedish and reduced the generation of Aß peptide in the cell lysates of N2a-SwedAPP. HLJDT-M showed more significant APP- and Aß- reducing effects than berberine, RC or CP treatment alone. In contrast, HLJDT, its component RS and the main active compound of RS, baicalein, strongly increased the levels of all the metabolic products of APP in the cell lysates. The extract from FG, however, did not influence APP modulation. Interestingly, regular treatment of TgCRND8 APP transgenic mice with baicalein exacerbated the amyloid plaque burden, APP metabolism and Aß production. Taken together, these data provide convincing evidence that HLJDT and baicalein treatment can increase the amyloidogenic metabolism of APP which is at least partly responsible for the baicalein-mediated Aß plaque increase in the brains of TgCRND8 mice. On the other hand, HLJDT-M significantly decreased all the APP metabolic products including Aß. Further study of HLJDT-M for therapeutic use in treating AD is warranted.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/patologia , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Espaço Intracelular/metabolismo , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
11.
PLoS One ; 7(10): e45469, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094016

RESUMO

Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aß and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Hipertensão Ocular/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Endotelina-1/genética , Endotelina-1/metabolismo , Expressão Gênica/efeitos dos fármacos , Imunoglobulina G/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/uso terapêutico , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
12.
Neurobiol Aging ; 33(12): 2903-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22459600

RESUMO

The accumulation of ß-amyloid (Aß) peptide derived from abnormal processing of amyloid precursor protein (APP) is a common pathological hallmark of Alzheimer's disease (AD) brains. In this study, we evaluated the therapeutic effect of berberine (BBR) extracted from Coptis chinensis Franch, a Chinese medicinal herb, on the neuropathology and cognitive impairment in TgCRND8 mice, a well established transgenic mouse model of AD. Two-month-old TgCRND8 mice received a low (25 mg/kg per day) or a high dose of BBR (100 mg/kg per day) by oral gavage until 6 months old. BBR treatment significantly ameliorated learning deficits, long-term spatial memory retention, as well as plaque load compared with vehicle control treatment. In addition, enzyme-linked immunosorbent assay (ELISA) measurement showed that there was a profound reduction in levels of detergent-soluble and -insoluble ß-amyloid in brain homogenates of BBR-treated mice. Glycogen synthase kinase (GSK)3, a major kinase involved in APP and tau phosphorylation, was significantly inhibited by BBR treatment. We also found that BBR significantly decreased the levels of C-terminal fragments of APP and the hyperphosphorylation of APP and tau via the Akt/glycogen synthase kinase 3 signaling pathway in N2a mouse neuroblastoma cells stably expressing human Swedish mutant APP695 (N2a-SwedAPP). Our results suggest that BBR provides neuroprotective effects in TgCRND8 mice through regulating APP processing and that further investigation of the BBR for therapeutic use in treating AD is warranted.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Berberina/uso terapêutico , Encéfalo , Transtornos Cognitivos , Gliose , Proteínas ADAM/metabolismo , Proteína ADAM10 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Cromonas/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Gliose/etiologia , Gliose/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfolinas/farmacologia , Mutação/genética , Fragmentos de Peptídeos/metabolismo , Transfecção
13.
J Bone Miner Res ; 26(3): 582-90, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20818642

RESUMO

myo-Inositol (MI) plays an essential role in several important processes of cell physiology, is involved in the neural system, and provides an effective treatment for some psychiatric disorders. Its role in osteogenesis and bone formation nonetheless is unclear. Sodium/MI cotransporter 1 (SMIT1, the major cotransporter of MI) knockout (SMIT1(-/-)) mice with markedly reduced tissue MI levels were used to characterize the essential roles of MI and SMIT1 in osteogenesis. SMIT1(-/-) embryos had a dramatic delay in prenatal mineralization and died soon after birth owing to respiratory failure, but this could be rescued by maternal MI supplementation. The rescued SMIT1(-/-) mice had shorter limbs, decreased bone density, and abnormal bone architecture in adulthood. Deletion of SMIT1 resulted in retarded postnatal osteoblastic differentiation and bone formation in vivo and in vitro. Continuous MI supplementation partially restored the abnormal bone phenotypes in adult SMIT1(-/-) mice and strengthened bone structure in SMIT1(+/+) mice. Although MI content was much lower in SMIT1(-/-) mesenchymal cells (MSCs), the I(1,4,5)P(3) signaling pathway was excluded as the means by which SMIT1 and MI affected osteogenesis. PCR expression array revealed Fgf4, leptin, Sele, Selp, and Nos2 as novel target genes of SMIT1 and MI. SMIT1 was constitutively expressed in multipotential C3H10T1/2 and preosteoblastic MC3T3-E1 cells and could be upregulated during bone morphogenetic protein 2 (BMP-2)-induced osteogenesis. Collectively, this study demonstrated that deficiency in SMIT1 and MI has a detrimental impact on prenatal skeletal development and postnatal bone remodeling and confirmed their essential roles in osteogenesis, bone formation, and bone mineral density (BMD) determination.


Assuntos
Inositol/metabolismo , Osteogênese , Simportadores/metabolismo , Envelhecimento/metabolismo , Animais , Osso e Ossos/embriologia , Osso e Ossos/patologia , Contagem de Células , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos/metabolismo , Deleção de Genes , Inositol 1,4,5-Trifosfato/metabolismo , Espaço Intracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Simportadores/deficiência , Transcrição Gênica
14.
FASEB J ; 19(13): 1887-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16174787

RESUMO

Sodium/myo-inositol cotransporter-1 (SMIT-1) is one of the transporters responsible for importing myo-inositol (MI) into the cells. MI is a precursor for a family of signal transduction molecules, phosphatidylinositol, and its derivatives that regulates many cellular functions. SMIT-1 null mice died soon after birth due to respiratory failure, but neonatal lethality was prevented by prenatal maternal MI supplement. Although the lung air sacs were closed, lung development was not significantly affected in the SMIT-1 null mice. The development of the peripheral nerves, including the brachial plexus, facial, vagus, and intercostal nerves, and the phrenic nerve that innervates the diaphragm was severely affected. All of these peripheral nerve abnormalities were corrected by prenatal MI supplement, indicating that MI is essential for the development of peripheral nerve and that neonatal lethality of the SMIT-1 knockout mice is most likely due to abnormal development of the nerves that control breathing. In the adult SMIT-1 deficient mice rescued by MI supplement, MI content in their brain, kidney, skeletal muscle, liver, and sciatic nerve was greatly reduced. The sciatic nerve, in particular, was most dependent on SMIT-1 for the accumulation of MI, and nerve conduction velocity and protein kinase C activity in this tissue were significantly reduced by SMIT-1 deficiency.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Sistema Nervoso Periférico/embriologia , Simportadores/genética , Simportadores/fisiologia , Animais , Linhagem Celular , Feminino , Genótipo , Heterozigoto , Homozigoto , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Neurônios/metabolismo , Nervos Periféricos/metabolismo , Sistema Nervoso Periférico/metabolismo , Fosfatidilinositóis/metabolismo , Nervo Frênico/metabolismo , Reação em Cadeia da Polimerase , Proteína Quinase C/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Transdução de Sinais , Simportadores/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA