RESUMO
Among diverse helper T-cell subsets, Th17 cells appear to be pathogenic in diverse autoimmune diseases, and thus, targeting Th17 cells could be beneficial for the treatment of the diseases in humans. Ginsenoside Rg3 is one of the most potent components in Korean Red Ginseng (KRG; Panax ginseng Meyer) in ameliorating inflammatory responses. However, the role of Rg3 in Th17 cells and Th17-mediated autoimmunity is unclear. We found that Rg3 significantly inhibited the differentiation of Th17 cells from naïve precursors in a dendritic cell (DC)-T co-culture system. While Rg3 minimally affected the secretion of IL-6, TNFα, and IL-12p40 from DCs, it significantly hampered the expression of IL-17A and RORγt in T cells in a T-cell-intrinsic manner. Moreover, Rg3 alleviated the onset and severity of experimental autoimmune encephalomyelitis (EAE), induced by transferring myelin oligodendrocyte glycoprotein (MOG)-reactive T cells. Our findings demonstrate that Rg3 inhibited Th17 differentiation and Th17-mediated neuro-inflammation, suggesting Rg3 as a potential candidate for resolving Th17-related autoimmune diseases.
Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Células Th17/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Feminino , Ginsenosídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Células Th17/imunologiaRESUMO
BACKGROUND: Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. METHODS: Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve CD4+ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. RESULTS: KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma (IFNγ) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. CONCLUSION: Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.
RESUMO
Despite the growing attention given to Traditional Medicine (TM) worldwide, there is no well-known, publicly available, integrated bio-pharmacological Traditional Korean Medicine (TKM) database for researchers in drug discovery. In this study, we have constructed PharmDB-K, which offers comprehensive information relating to TKM-associated drugs (compound), disease indication, and protein relationships. To explore the underlying molecular interaction of TKM, we integrated fourteen different databases, six Pharmacopoeias, and literature, and established a massive bio-pharmacological network for TKM and experimentally validated some cases predicted from the PharmDB-K analyses. Currently, PharmDB-K contains information about 262 TKMs, 7,815 drugs, 3,721 diseases, 32,373 proteins, and 1,887 side effects. One of the unique sets of information in PharmDB-K includes 400 indicator compounds used for standardization of herbal medicine. Furthermore, we are operating PharmDB-K via phExplorer (a network visualization software) and BioMart (a data federation framework) for convenient search and analysis of the TKM network. Database URL: http://pharmdb-k.org, http://biomart.i-pharm.org.