RESUMO
OPINION STATEMENT: About 70-80% of early breast cancer (BC) patients receive adjuvant endocrine therapy (ET) for at least 5 years. ET includes in the majority of cases the use of aromatase inhibitors, as upfront or switch strategy, that lead to impaired bone health. Given the high incidence and also the high prevalence of BC, cancer treatment-induced bone loss (CTIBL) represents the most common long-term adverse event experimented by patients with hormone receptor positive tumours. CTIBL is responsible for osteoporosis occurrence and, as a consequence, fragility fractures that may negatively affect quality of life and survival expectancy. As recommended by main international guidelines, BC women on aromatase inhibitors should be carefully assessed for their fracture risk at baseline and periodically reassessed during adjuvant ET in order to early detect significant worsening in terms of bone health. Antiresorptive agents, together with adequate intake of calcium and vitamin D, should be administered in BC patients during all course of ET, especially in those at high risk of osteoporotic fractures, as calculated by tools available for clinicians. Bisphosphonates, such as zoledronate or pamidronate, and anti-RANKL antibody, denosumab, are the two classes of antiresorptive drugs used in clinical practice with similar efficacy in preventing bone loss induced by aromatase inhibitor therapy. The choice between them, in the absence of direct comparison, should be based on patients' preference and compliance; the different safety profile is mainly related to the route of administration, although both types of drugs are manageable with due care, since most of the adverse events are predictable and preventable. Despite advances in management of CTIBL, several issues such as the optimal time of starting antiresorptive agents and the duration of treatment remain unanswered. Future clinical trials as well as increased awareness of bone health are needed to improve prevention, assessment and treatment of CTIBL in these long-term survivor patients.
Assuntos
Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Osteoporose/induzido quimicamente , Inibidores da Aromatase/efeitos adversos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/uso terapêutico , Denosumab/uso terapêutico , Difosfonatos/uso terapêutico , Feminino , Fraturas Ósseas/prevenção & controle , Humanos , Osteoporose/diagnóstico , Osteoporose/terapiaRESUMO
Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its' very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine.
Assuntos
Biomarcadores , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Neoplasias/genética , Neoplasias/terapia , Sistemas Automatizados de Assistência Junto ao Leito , Medicina de Precisão/métodos , Epigênese Genética , HumanosRESUMO
BACKGROUND: Multimodality treatment is considered the best treatment strategy for malignant pleural mesothelioma (MPM). However, the ideal combination of them is still a matter of controversy. Here, we report a case series of MPM treated with a trimodality approach: induction chemotherapy (CT), pleurectomy/decortication (P/D), postoperative radiotherapy (RT) and post-operative CT. METHODS: A retrospective case series of 17 MPM patients treated between 2013 and 2020 is presented. Patients had epithelial or mixed MPM diagnosed by video-assisted thoracoscopy and pathologic IMIG stage I or II disease. Treatment details and radiological data were collected. Induction therapy consisted of combination of cisplatin and pemetrexed, every 21 days for two cycles. P/D was performed 4-6 weeks after induction CT, post-operative RT 3-6 weeks after surgery, while post-operative CT was given 4-6 weeks after RT, with the same schedule of induction. RESULTS: All patients showed objective response or stability of disease at the restaging following induction CT and underwent surgery by posterolateral thoracotomy. There were two cases of cardiac arrest as major intraoperative complication, both resolved by manual cardiac massage. Minor complications included one hemidiaphragm elevation, 1 anemia requiring blood transfusion, one wound infection, and two persistent air leaks. Median overall survival was 32.1 months, median progression free survival was 23.7 months. CONCLUSIONS: These results suggest the feasibility of these trimodality treatment scheme for early stage MPM patients. Larger series and long-term prospective studies are needed to confirm the validity of this strategy.
RESUMO
INTRODUCTION: Fluoropyrimidines such as 5-fluorouracil (5-FU) and its orally active prodrug, capecitabine, are widely used in the treatment of gastrointestinal cancer, including colorectal cancer. Dihydropyrimidine dehydrogenase (DPD) plays an important role in the 5-FU metabolism. Dihydropyrimidine dehydrogenase gene (DPYD) is a highly polymorphic gene with several hundreds of reported genetic variants and DPD activity levels vary considerably among individuals, with different 5-FU-related efficacy and toxicity. About 5% of the population is deficient in DPD enzyme activity. The most well studied DPYD variant is the IVS14+1G>A, also known as DPYD *2A. In this report, we present a case of a patient with a double heterozygote DPYD variant (DPYD activity score: 0,5 according to Clinical Pharmacogenetics Implementation Consortium) who experienced a severe fluoropyrimidine-related toxicity resolved without any consequence. PATIENT CONCERNS: A 46-years-old Caucasian man with diagnosis of left colon adenocarcinoma underwent left hemicolectomy on July 2017: pT3 G3 N1c M0. According to the disease stage, he started an adjuvant therapy with XELOX using capecitabine at 50% of total dose, because of his DPYD IVS14+1G>A variant, detected before the treatment. DIAGNOSIS: After few days, despite of this dose reduction, he experienced life-threatening adverse events such as mucositis G3, diarrhea G3, neutropenia G4, thrombocytopenia G4, and hyperbilirubinemia G3 according to Common Terminology Criteria for Adverse Events v 5.0. INTERVENTIONS: As first, we set up an intensive rehydration therapy, antibiotic and antifungal prophylaxis, Granulocyte-Colony Stimulating Factors, and supportive blood transfusions. Additional genetic tests revealed a double heterozygote variant of DPYD gene (DPYD IVS14+1G>A and 2846A>T) which is a very rare situation and only 3 cases are described in literature, all of them concluded with patient's death. OUTCOMES: After 3 weeks of intensive therapy, the patient was fully recovered. Furthermore, all the whole-body CT scans performed since discharge from the hospital until now, have confirmed no evidence of disease. CONCLUSIONS: Recent studies demonstrated that screening strategy for the most common DPYD variants allowed for avoiding toxicities and saving money. This report underlines the importance of genotyping DPYD before treatment and emphasizes the role of genotype-guided dose individualization.
Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Capecitabina/toxicidade , Neoplasias do Colo/tratamento farmacológico , Desoxicitidina/análogos & derivados , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/análogos & derivados , Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Capecitabina/farmacocinética , Capecitabina/uso terapêutico , Quimioterapia Adjuvante , Neoplasias do Colo/patologia , Neoplasias do Colo/cirurgia , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Desoxicitidina/uso terapêutico , Desoxicitidina/toxicidade , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Fluoruracila/uso terapêutico , Fluoruracila/toxicidade , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , OxaloacetatosRESUMO
In several European countries, especially in Sweden, the seeds of the species Astragalus boeticus L. were widely used as coffee substitutes during the 19th century. Nonetheless, data regarding the phytochemistry and the pharmacological properties of this species are currently extremely limited. Conversely, other species belonging to the Astragalus genus have already been extensively investigated, as they were used for millennia for treating various diseases, including cancer. The current work was addressed to characterize cycloartane glycosides from A. boeticus, and to evaluate their cytotoxicity towards human colorectal cancer (CRC) cell lines. The isolation of the metabolites was performed by using different chromatographic techniques, while their chemical structures were elucidated by nuclear magnetic resonance (NMR) (1D and 2D techniques) and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. The cytotoxic assessment was performed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in Caco-2, HT-29 and HCT-116 CRC cells. As a result, the targeted phytochemical study of A. boeticus enabled the isolation of three new cycloartane glycosides, 6-O-acetyl-3-O-(4-O-malonyl)-ß-d-xylopyranosylcycloastragenol (1), 3-O-(4-O-malonyl)-ß-d-xylopyranosylcycloastragenol (2), 6-O-acetyl-25-O-ß-d-glucopyranosyl-3-O-ß-d-xylopyranosylcycloastragenol (3) along with two known compounds, 6-O-acetyl-3-O-ß-d-xylopyranosylcycloastragenol (4) and 3-O-ß-d-xylopyranosylcycloastragenol (5). Importantly, this work demonstrated that the acetylated cycloartane glycosides 1 and 4 might preferentially inhibit cell growth in the CRC cell model resistant to epidermal growth factor receptor (EGFR) inhibitors.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Astrágalo/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicosídeos/farmacologia , Triterpenos/química , Acilação , Antineoplásicos Fitogênicos/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicosídeos/química , Células HCT116 , Células HT29 , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray , SuéciaRESUMO
BACKGROUND: Pioglitazone, a synthetic peroxisome proliferator activated receptor (PPAR-γ) ligand, is known as an antidiabetic drug included in the thiazolidinediones (TZDs) class. It regulates the lipid and glucose cell metabolism and recently a role in the inhibition of numerous cancer cell processes has been described. METHODS: In our work we investigate the anti-tumor effects of pioglitazone in in vitro models of non small cell lung cancer (NSCLC) and also, we generated ex-vivo three-dimensional (3D) cultures from human lung adenocarcinoma (ADK) as a model to test drug efficacy observed in vitro. The inhibitory effect of pioglitazone on cell proliferation, apoptosis and cell invasion in a panel of human NSCLC cell lines was evaluated by multiple assays. RESULTS: Pioglitazone reduced proliferative and invasive abilities with an IC50 ranging between 5 and 10 µM and induced apoptosis of NSCLC cells. mRNA microarray expression profiling showed a down regulation of MAPK, Myc and Ras genes after treatment with pioglitazone; altered gene expression was confirmed by protein analysis in a dose-related reduction of survivin and phosphorylated proteins levels of MAPK pathway. Interestingly mRNA microarray analysis showed also that pioglitazone affects TGFß pathway, which is important in the epithelial-to-mesenchimal transition (EMT) process, by down-regulating TGFßR1 and SMAD3 mRNA expression. In addition, extracellular acidification rate (ECAR) and a proportional reduction of markers of altered glucose metabolism in treated cells demonstrated also cell bioenergetics modulation by pioglitazone. CONCLUSIONS: Data indicate that PPAR-γ agonists represent an attractive treatment tool and by suppression of cell growth (in vitro and ex vivo models) and of invasion via blockade of MAPK cascade and TGFß/SMADs signaling, respectively, and its role in cancer bioenergetics and metabolism indicate that PPAR-γ agonists represent an attractive treatment tool for NSCLC.
Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , PPAR gama/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Proteína Smad3/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , PPAR gama/agonistas , Pioglitazona/farmacologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genéticaRESUMO
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the ineffectiveness of the current therapies seriously limits the survival rate of NSCLC patients. In the search for new antitumor agents, nature has played a pivotal role providing a variety of molecules, which are likely to exert selective anti-tumour properties. Herein, we investigated the antiproliferative potential of Urtica dioica L. extract (UD) against NSCLC cell models with low sensitivity to cisplatin, a cytotoxic agent largely employed to cure NSCLCs. UD inhibited cell proliferation in the selected cells, while no toxic effects were observed in normal lung cells. Furthermore, the co-treatment of UD and cisplatin notably sensitised NSCLC cells to cisplatin. Mechanistically, we discovered that UD-promoted endoplasmic reticulum (ER) stress via activation of the growth arrest and DNA damage-inducible gene 153 (GADD153) triggering apoptosis. We also performed an extensive NMR analysis of UD, identifying rutin and oxylipins as the main secondary metabolites present in the mixture. Additionally, we discovered that an oxylipins' enriched fraction contributes to the antiproliferative activity of the plant extract. In the future, this study may provide new chemical scaffolds for the design of anti-cancer agents that target NSCLCs with low sensitivity to cisplatinum.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Urtica dioica/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Oxilipinas/farmacologia , Extratos Vegetais/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Rutina/farmacologiaRESUMO
The discovery of bioactive compounds from natural sources entails an extremely lengthy process due to the timescale and complexity of traditional methodologies. In our study, we used a rapid NMR based metabolomic approach as tool to identify secondary metabolites with anti-proliferative activity against a panel of human colorectal cancer cell lines with different mutation profiles. For this purpose, fourteen Fabaceae species of Mediterranean vegetation were investigated using a double screening method: 1H NMR profiling enabled the identification of the main compounds present in the mixtures, whilst parallel biological assays allowed the selection of two plant extracts based on their strong anti-proliferative properties. Using high-resolution 2D NMR spectroscopy, putative active constituents were identified in the mixture and isolated by performing a bio-guided fractionation of the selected plant extracts. As a result, we found two active principles: a cycloartane glycoside and protodioscin derivative. Interestingly, these metabolites displayed a preferential anti-proliferative effect on colon cancer cell lines with an intrinsic resistance to anti-EGFR therapies. Our work provides an NMR-based metabolomic approach as a powerful and efficient tool to discover natural products with anticancer activities circumventing time-consuming procedures.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/metabolismo , Metabolômica/métodos , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fracionamento Químico/métodos , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Fabaceae/metabolismo , Glicosídeos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologiaRESUMO
PURPOSE: Regorafenib, an oral multikinase inhibitor, has demonstrated survival benefit in metastatic colorectal cancer (mCRC) patients that have progressed after all standard therapies. However, novel strategies to improve tolerability and enhance anti-cancer efficacy are needed. EXPERIMENTAL DESIGN: We have evaluated in vitro the effects of regorafenib in combination with silybin, a biologically active component extracted from the seeds of Silybum marianum, in a panel of human colon cancer cells. Furthermore, we have prospectively treated a cohort of 22 refractory mCRC patients with regorafenib plus silybin. RESULTS: Treatment with regorafenib determined a dose-dependent growth inhibition whereas treatment with silybin had no anti-proliferative effects among all cancer cells tested. The combined treatment with regorafenib and silybin induced synergistic anti-proliferative and apoptotic effects by blocking PI3K/AKT/mTOR intracellular pathway. Moreover, combined treatment with regorafenib and silybin increased the production of reactive oxygen species levels within cells. In an exploratory proof of concept clinical study in a cohort of 22 mCRC patients after failure of all standard therapies, the clinical activity of regorafenib in combination with silybin was assessed. A median progression-free survival of 10.0 months and a median overall survival of 17.6 months were observed in these patients. These results suggest that the combined treatment potentially increases the clinical efficacy of regorafenib. Moreover, due to its anti-oxidative properties, silybin could protect patients from drug-induced liver damages, allowing to continue an effective anti-cancer therapy. CONCLUSIONS: The present study suggests that silybin in combination with regorafenib is a promising strategy for treatment of metastatic colorectal patients.
RESUMO
The authors focused on the current surgical treatment of resectable gastric cancer, and significance of peri- and post-operative chemo or chemoradiation. Gastric cancer is the 4(th) most commonly diagnosed cancer and the second leading cause of cancer death worldwide. Surgery remains the only curative therapy, while perioperative and adjuvant chemotherapy, as well as chemoradiation, can improve outcome of resectable gastric cancer with extended lymph node dissection. More than half of radically resected gastric cancer patients relapse locally or with distant metastases, or receive the diagnosis of gastric cancer when tumor is disseminated; therefore, median survival rarely exceeds 12 mo, and 5-years survival is less than 10%. Cisplatin and fluoropyrimidine-based chemotherapy, with addition of trastuzumab in human epidermal growth factor receptor 2 positive patients, is the widely used treatment in stage IV patients fit for chemotherapy. Recent evidence supports the use of second-line chemotherapy after progression in patients with good performance status.
Assuntos
Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/cirurgia , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimiorradioterapia/métodos , Quimioterapia Adjuvante/métodos , Cisplatino/administração & dosagem , Ensaios Clínicos como Assunto , Fluoruracila/administração & dosagem , Humanos , Metástase Neoplásica , Cuidados Paliativos/métodos , Radioterapia/métodos , Receptor ErbB-2/metabolismo , TrastuzumabRESUMO
INTRODUCTION: In recent times, there has been much interest in the development of pharmacological kinase inhibitors that treat NSCLC. Furthermore, treatment options have been guided by the development of a wide panel of synthetic small molecule kinase inhibitors. Most of the molecules developed belong to the type I class of inhibitors that target the ATP-binding site in its active conformation. The high sequence similarity in the ATP-binding site among members of the kinase families often results in low selectivity and additional toxicities. Also, second mutations in the ATP-binding site, such as threonine to methionine at position 790, have been described as a mechanism of resistance to ATP-competitive kinase inhibitors. For these reasons, alternative drug development approaches targeting sites other than the ATP cleft are being pursued. The class III or allosteric inhibitors, which bind outside the ATP-binding site, have been shown to negatively modulate kinase activity. AREAS COVERED: In this review, the authors discuss the most well-characterised allosteric inhibitors that have reached clinical development in NSCLC. EXPERT OPINION: Great progress has made in developing inhibitors with entirely new modes of action. That being said, it is important to highlight that despite their apparent simplicity, biochemical assays will remain at the core of drug discovery activities to better explore these new opportunities.
Assuntos
Regulação Alostérica/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Trifosfato de Adenosina/metabolismo , Animais , Ensaios Clínicos como Assunto , Método Duplo-Cego , Avaliação Pré-Clínica de Medicamentos , Humanos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Cellular heterogeneity, redundancy of molecular pathways and effects of the microenvironment contribute to the survival, motility and metastasis of cells in solid tumors. It is unlikely that tumors are entirely dependent on only one abnormally activated signaling pathway; consequently, treatment with an agent that interferes with a single target may be insufficient. Combined blockade of functionally linked and relevant multiple targets has become an attractive therapeutic strategy. The EGFR and ERBB2 (HER2) pathways and VEGF-dependent angiogenesis have a pivotal role in cancer pathogenesis and progression. Robust experimental evidence has shown that these pathways are functionally linked and has demonstrated a suggested role for VEGF in the acquired resistance to anti-ERBB drugs when these receptors are pharmacologically blocked. Combined inhibition of ERBB and VEGF signaling interferes with a molecular feedback loop responsible for acquired resistance to anti-ERBB agents and promotes apoptosis while ablating tumor-induced angiogenesis. To this aim, either two agents highly selective against VEGF and ERBB respectively, or, alternatively, a single multitargeted agent, can be used. Preclinical studies have proven the efficacy of both these approaches and early clinical studies have provided encouraging results. This Review discusses the experimental rationale for, preclinical studies of and clinical trials on combined blockade of ERBB and VEGF signaling.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Receptores ErbB/metabolismo , Humanos , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Herein, we present a randomized phase II trial enrolling elderly patients or patients with a performance status (PS) of 2 affected by advanced non-small-cell lung cancer to receive, as first-line therapy, sorafenib/gemcitabine or sorafenib/erlotinib. The primary objective is 1-year survival, and secondary objectives include activity, toxicity, and overall survival. An additional secondary objective will be to evaluate biomarkers. Sample size is calculated on the basis of theory of selection. The study will enroll 100 patients: 58 patients aged >or= 70 years with a PS of 0-2 and 42 patients aged < 70 years with a PS of 2. The analysis will be conducted differently for the 2 groups of patients.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Idoso , Benzenossulfonatos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/secundário , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib , Humanos , Neoplasias Pulmonares/patologia , Metástase Linfática/prevenção & controle , Niacinamida/análogos & derivados , Compostos de Fenilureia , Piridinas/administração & dosagem , Quinazolinas/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sorafenibe , Taxa de Sobrevida , GencitabinaRESUMO
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor A (VEGF-A) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. ZD6474 is an orally available, small molecule inhibitor of VEGF receptor-2 (VEGFR-2), EGFR and RET tyrosine kinase activity. We investigated the activity of ZD6474 in combination with cetuximab, an anti-EGFR blocking monoclonal antibody, to determine the anti-tumor activity of EGFR blockade through the combined use of two agents targeting the receptor at different molecular sites in cancer cells and of VEGFR-2 blockade in endothelial cells. EXPERIMENTAL DESIGN: The anti-tumor activity in vitro and in vivo of ZD6474 and/or cetuximab was tested in human cancer cell lines with a functional EGFR autocrine pathway. RESULTS: The combination of ZD6474 and cetuximab determined synergistic growth inhibition in all cancer cell lines tested as assessed by the Chou and Talalay method. In nude mice bearing established human colon carcinoma (GEO) or lung adenocarcinoma (A549) xenografts and treated with ZD6474 and/or cetuximab for 4 weeks, a reversible tumor growth inhibition was caused by each drug. In contrast, a more significant tumor growth delay resulted from the combination of the two agents with an approximately 100-110 days increase in mice median overall survival as compared to single agent treatment. CONCLUSIONS: This study provides a rationale for evaluating in a clinical setting the double blockade of EGFR in combination with inhibition of VEGFR-2 signaling as cancer therapy.
Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Piperidinas/farmacologia , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Gefitinibe , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVE: Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. METHODS: Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. RESULTS: ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis, substantially increasing the level of necrosis seen when combined with radiation therapy. The combination of radiation therapy, ZD6126, and ZD1839 induced the greatest effects on tumor growth and angiogenesis. CONCLUSION: This first report shows that a selective vascular-targeting agent (ZD6126) + an anti-epidermal growth factor receptor agent (ZD1839) and radiation have additive in vivo effects in a human cancer model. Targeting the tumor vasculature offers an excellent strategy to enhance radiation cytotoxicity. Polytargeted therapy with agents that interfere with both growth factor and angiogenic signaling warrants further investigation.