Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 491, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578469

RESUMO

BACKGROUND: This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS: We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS: The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS: Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.


Assuntos
Antineoplásicos , Nigella sativa , Óleos de Plantas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Caspase 3/genética , Metaloproteinase 2 da Matriz , Apoptose , Proteína X Associada a bcl-2 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico , Proliferação de Células , Células MCF-7
2.
Environ Toxicol ; 39(3): 1402-1414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987225

RESUMO

This study investigated the effects of Selenium (Se) on testis toxicity induced by Acrylamide (ACR) in rats. In our study, 50 male adult rats were used, and the rats were divided into five groups; control, ACR, Se0.5 + ACR, Se1 + ACR, and Se1. Se and ACR treatments were applied for 10 days. On the 11th day of the experimental study, intracardiac blood samples from the rats were taken under anesthesia and euthanized. Sperm motility and morphology were evaluated. Dihydrotestosterone, FSH, and LH levels in sera were analyzed with commercial ELISA kits. MDA, GSH, TNF-α, IL-6, and IL-1ß levels and SOD, GPx, and CAT, activities were measured to detect the level of oxidative stress and inflammation in rat testis tissues. Expression analysis of HSD17B1, StAR, CYP17A1, MAPk14, and P-53 as target mRNA levels were performed with Real Time-PCR System technology for each cDNA sample synthesized from rat testis RNA. Testicular tissues were evaluated by histopathological, immunohistochemical, and immunofluorescent examinations. Serum dihydrotestosterone and FSH levels decreased significantly in the ACR group compared to the control group, while LH levels increased and a high dose of Se prevented these changes caused by ACR. A high dose of Se prevented these changes caused by ACR. ACR-induced testicular oxidative stress, inflammation, apoptosis, changes in the expression of reproductive enzymes, some changes in sperm motility and morphology, DNA, and tissue damage, and Se administration prevented these pathologies caused by ACR. As a result of this study, it was determined that Se prevents oxidative stress, inflammation, apoptosis, autophagy, and DNA damage in testicular toxicity induced by ACR in rats.


Assuntos
Selênio , Testículo , Ratos , Masculino , Animais , Selênio/farmacologia , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Acrilamida , Motilidade dos Espermatozoides , Estresse Oxidativo , Antioxidantes/metabolismo , Inflamação/metabolismo , Hormônio Foliculoestimulante/metabolismo , Apoptose , Dano ao DNA , Autofagia
3.
Chem Biodivers ; 20(10): e202301093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690997

RESUMO

This study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.

4.
Ren Fail ; 39(1): 314-322, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28100100

RESUMO

Contrast media (CM) is known to have nephrotoxic adverse effects. Epigallocatechin-3-gallate (EGCG) is the most abundant and active catechin in green tea, and has strong antioxidant and anti-inflammatory properties. This study investigated whether EGCG can reduce contrast-induced nephrotoxicity (CIN), alone or with glycerol (GLY)-induced renal damage, and to understand its mechanisms of protection against toxicity, using models of GLY and CIN in rats. The rats were separated into eight groups (n = 6 in each), as follows: Healthy, GLY, CM, GLY + CM, CM + EGCG 50 mg/kg (po), GLY + CM + EGCG 50 mg/kg (po), CM + EGCG 100 mg/kg (po), and GLY + CM + EGCG 100 mg/kg (po). Both doses of EGCG protected against CM-induced renal dysfunction, as measured by serum creatinine and blood urea nitrogen (BUN). In addition, EGCG treatment markedly improved CIN-induced oxidative stress, and resulted in a significant down-regulatory effect on tumor necrosis factor (TNF)-α and nuclear factor (NF)-κB mRNA expression. Moreover, histopathological analysis showed that EGCG also attenuated CM-induced kidney damage. Considering the potential clinical use of CM and the numerous health benefits of EGCG, this study showed the protective role of multi-dose EGCG treatment on CIN and GLY-aggravated CIN through different mechanisms.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Meios de Contraste/efeitos adversos , Glicerol/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Animais , Nitrogênio da Ureia Sanguínea , Catequina/farmacologia , Citocinas/sangue , Rim/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Chá
5.
Iran J Basic Med Sci ; 19(5): 483-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27403254

RESUMO

OBJECTIVES: In the present study, our aim was to investigate the possible protective effects of epigallocatechin gallate (EGCG) on lipopolysaccharide (LPS)-induced hepatotoxicity by using Hep3B human hepatoma cells. Specifically, the study examines the role of some proinflammatory markers and oxidative damage as possible mechanisms of LPS-associated cytotoxicity. Consequently, the hepatocellular carcinoma cell line Hep3B was chosen as a model for investigation of LPS toxicity and the effect of EGCG on LPS-exposed cells. MATERIALS AND METHODS: The Hep3B human hepatoma cells were used for this study. The cytotoxic effects of chemicals (EGCG and LPS), AST and ALT levels, SOD and CAT activities, GSH-Px level and TNF-alpha and IL-6 levels were detected by using different biochemical and molecular methods. LPS and EGCG were applied to cells at various times and doses. RESULTS: The highest treatment dose of EGCG (400 µM) led to a dramatic decrease in SOD level and increase in CAT and GSH levels. Additionally, the highest dose of EGCG also led to a dramatic increase in TNF-alpha and IL-6 levels. On the other hand, effective doses of EGCG (200 and 100 µM) normalized all related parameters levels. CONCLUSION: LPS caused hepatotoxicity, but interestingly, a high dose of EGCG was found to be a cytotoxic agent in this study. However, other two doses of EGCG led to a decrease in both inflammatory cytokine levels and antioxidant enzyme levels. Further studies should examine the effect of EGCG on secondary cellular signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA