Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cardiovasc Res ; 119(4): 982-997, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626303

RESUMO

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of mortality worldwide, requiring novel therapeutic and lifestyle interventions. Metabolic alterations and energy production deficit are hallmarks and thereby promising therapeutic targets for this complex clinical syndrome. We aim to study the molecular mechanisms and effects on cardiac function in rodents with HFrEF of a designer diet in which free essential amino acids-in specifically designed percentages-substituted for protein. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricle (LV) pressure overload or sham surgery. Whole-body glucose homeostasis was studied with glucose tolerance test, while myocardial dysfunction and fibrosis were measured with echocardiogram and histological analysis. Mitochondrial bioenergetics and morphology were investigated with oxygen consumption rate measurement and electron microscopy evaluation. Circulating and cardiac non-targeted metabolite profiles were analyzed by ultrahigh performance liquid chromatography-tandem mass spectroscopy, while RNA-sequencing was used to identify signalling pathways mainly affected. The amino acid-substituted diet shows remarkable preventive and therapeutic effects. This dietary approach corrects the whole-body glucose metabolism and restores the unbalanced metabolic substrate usage-by improving mitochondrial fuel oxidation-in the failing heart. In particular, biochemical, molecular, and genetic approaches suggest that renormalization of branched-chain amino acid oxidation in cardiac tissue, which is suppressed in HFrEF, plays a relevant role. Beyond the changes of systemic metabolism, cell-autonomous processes may explain at least in part the diet's cardioprotective impact. CONCLUSION: Collectively, these results suggest that manipulation of dietary amino acids, and especially essential amino acids, is a potential adjuvant therapeutic strategy to treat systolic dysfunction and HFrEF in humans.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Camundongos , Animais , Miocárdio/metabolismo , Volume Sistólico , Aminoácidos Essenciais/metabolismo , Dieta
2.
Dev Cell ; 57(23): 2623-2637.e8, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36473459

RESUMO

De novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, ß3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36. Linoleic acid not only was oxidized as fuel in the mitochondria but also was utilized for the synthesis of arachidonic acid-derived signaling entities such as prostaglandin D2. Oral supplementation of linoleic acid was sufficient to stimulate beige progenitor cell proliferation, even under thermoneutral conditions, in a CD36-dependent manner. Together, this study provides mechanistic insights into how diverse pathophysiological stimuli, such as cold and burn injury, promote de novo beige fat biogenesis.


Assuntos
Tecido Adiposo Bege , Ácido Linoleico , Humanos , Animais , Camundongos , Ácido Linoleico/farmacologia , Proliferação de Células
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166494, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850176

RESUMO

Collagen is one of the main components of the extracellular matrix (ECM), involved, among all, in the maintenance of the structural support of tissues. In fibrotic diseases, collagen is overexpressed, and its production determines the formation of a significantly stiffer ECM. The cross-linking of high-resolution analytical tools, able to investigate both the tridimensional organization and the secondary structure of collagen in fibrotic diseases, could be useful to identify defined markers correlating the status of this protein with specific pathological conditions. To this purpose, an innovative multidisciplinary approach based on Phase-Contrast MicroComputed Tomography, Transmission Electron Microscopy, and Fourier Transform Infrared Imaging Spectroscopy was exploited on leiomyoma samples and adjacent myometrium to characterize microstructural collagen features. Uterine leiomyoma is a common gynecological disorder affecting women in fertile age. It is characterized by a massive collagen production due to the repairing processes occurring at myometrium level, and, hence, it represents a valuable model to investigate collagen self-organization in a pathological condition. Moreover, to evaluate the sensitivity of this multidisciplinary approach, the effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) omega-3 fatty acids in collagen reduction were also investigated.


Assuntos
Ácidos Graxos Ômega-3 , Leiomioma , Neoplasias Uterinas , Colágeno/metabolismo , Feminino , Fibrose , Humanos , Leiomioma/metabolismo , Leiomioma/patologia , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Microtomografia por Raio-X
4.
Eat Weight Disord ; 26(5): 1647-1651, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32691334

RESUMO

Since the outbreak of COVID-19, clinicians have tried every effort to fight the disease, and multiple drugs have been proposed. However, no proven effective therapies currently exist, and different clinical phenotypes complicate the situation. In clinical practice, many severe or critically ill COVID-19 patients developed gastrointestinal (GI) disturbances, including vomiting, diarrhoea, or abdominal pain, even in the absence of cough and dyspnea. Understanding the mechanism of GI disturbances is warranted for exploring better clinical care for COVID-19 patients. With evidence collected from clinical studies on COVID-19 and basic research on a rare genetic disease (i.e., Hartnup disorder), we put forward a novel hypothesis to elaborate an effective nutritional therapy. We hypothesize that SARS-CoV-2 spike protein, binding to intestinal angiotensin-converting enzyme 2, negatively regulates the absorption of neutral amino acids, and this could explain not only the GI, but also systemic disturbances in COVID-19. Amino acid supplements could be recommended.Level of evidence No level of evidence: Hypothesis article.


Assuntos
Aminoácidos/administração & dosagem , COVID-19/complicações , Gastroenteropatias/etiologia , Doença de Hartnup/metabolismo , Enzima de Conversão de Angiotensina 2 , COVID-19/epidemiologia , Absorção Gastrointestinal , Doença de Hartnup/complicações , Humanos , Intestino Delgado/fisiologia , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
Artigo em Inglês | MEDLINE | ID: mdl-31749764

RESUMO

Obesity results from critical periods of positive energy balance characterized by caloric intake greater than energy expenditure. This disbalance promotes adipose tissue dysfunction which is related to other comorbidities. Melatonin is a low-cost therapeutic agent and studies indicate that its use may improve obesity-related disorders. To evaluate if the melatonin is efficient in delaying or even blocking the damages caused by excessive ingestion of a high-fat diet (HFD) in mice, as well as improving the inflammatory profile triggered by obesity herein, male C57BL/6 mice of 8 weeks were induced to obesity by a HFD and treated for 10 weeks with melatonin. The results demonstrate that melatonin supplementation attenuated serum triglyceride levels and total and LDL cholesterol and prevented body mass gain through a decreased lipogenesis rate and increased lipolytic capacity in white adipocytes, with a concomitant increment in oxygen consumption and Pgc1a and Prdm16 expression. Altogether, these effects prevented adipocyte hypertrophy caused by HFD and reflected in decreased adiposity. Finally, melatonin supplementation reduced the crown-like-structure (CLS) formation, characteristic of the inflammatory process by macrophage infiltration into white adipose tissue of obese subjects, as well as decreased the gene expression of inflammation-related factors, such as leptin and MCP1. Thus, the melatonin can be considered a potential therapeutic agent to attenuate the metabolic and inflammatory disorders triggered by obesity.

6.
J Anat ; 220(6): 622-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22458546

RESUMO

Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a large number of neuronal and glial cells in culture; its expression in glial cells is strongly upregulated after a variety of nerve tissue injuries. Exogenously administered CNTF produces an anorectic effect via activation of hypothalamic neurons and stimulates neurogenesis in mouse hypothalamus. To determine whether CNTF is produced endogenously in the hypothalamus, we sought cellular sources and examined their distribution in adult mouse hypothalamus by immunohistochemistry. CNTF immunoreactivity (IR) was predominantly detected in the ependymal layer throughout the rostrocaudal extension of the third ventricle, where numerous ependymocytes and tanycytes exhibited specific staining. Some astrocytes in the grey matter of the anterior hypothalamus and in the median eminence of the hypothalamic tuberal region were also positive. Stimulation of cells bearing CNTF receptor α (CNTFRα) induces specific activation of the signal transducer and activator of transcription 3 (STAT3) signalling system. Treatment with recombinant CNTF and detection of the nuclear expression of phospho-STAT3 (P-STAT3) showed that CNTF-producing ependymal cells and tanycytes were intermingled with, or very close to, P-STAT3-positive, CNTFRα-bearing cells. A fraction of CNTF-producing ependymal cells and tanycytes and some median eminence astrocytes also exhibited P-STAT3 IR. Thus, in normal adult mice the ependyma of the third ventricle is both a source of and a target for CNTF, which may play hitherto unknown roles in hypothalamic function in physiological conditions.


Assuntos
Fator Neurotrófico Ciliar/metabolismo , Hipotálamo/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Camundongos , Peroxidase/metabolismo
7.
Cell Metab ; 15(3): 299-310, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405068

RESUMO

The endocannabinoid system plays a critical role in the control of energy homeostasis, but the identity and localization of the endocannabinoid signal involved remain unknown. In the present study, we developed transgenic mice that overexpress in forebrain neurons the presynaptic hydrolase, monoacylglycerol lipase (MGL), which deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). MGL-overexpressing mice show a 50% decrease in forebrain 2-AG levels but no overt compensation in other endocannabinoid components. This biochemical abnormality is accompanied by a series of metabolic changes that include leanness, elevated energy cost of activity, and hypersensitivity to ß(3)-adrenergic-stimulated thermogenesis, which is corrected by reinstating 2-AG activity at CB(1)-cannabinoid receptors. Additionally, the mutant mice are resistant to diet-induced obesity and express high levels of thermogenic proteins, such as uncoupling protein 1, in their brown adipose tissue. The results suggest that 2-AG signaling through CB(1) regulates the activity of forebrain neural circuits involved in the control of energy dissipation.


Assuntos
Ácidos Araquidônicos/metabolismo , Metabolismo Energético/fisiologia , Glicerídeos/metabolismo , Prosencéfalo/metabolismo , Transdução de Sinais/fisiologia , Animais , Endocanabinoides , Metabolismo Energético/genética , Hipotálamo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/genética
8.
Nat Med ; 17(9): 1076-85, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857651

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic X receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1ß (PGC-1α or PGC-1ß, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1ß expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.


Assuntos
Cardiomiopatias/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Mitocôndrias/fisiologia , PPAR alfa/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Animais , Western Blotting , Cardiomiopatias/etiologia , Primers do DNA/genética , DNA Complementar/genética , DNA Mitocondrial/genética , Ecocardiografia , Dosagem de Genes , Lipase/genética , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/fisiologia , Oxirredução , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/fisiologia
9.
J Lipid Res ; 52(9): 1702-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21737753

RESUMO

This study investigated the effect of chronic AMP-kinase (AMPK) activation with 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) on white adipose tissue (WAT) metabolism and the implications for visceral (VC) and subcutaneous (SC) adiposity, whole body-energy homeostasis, and hypothalamic leptin sensitivity. Male Wistar rats received daily single intraperitoneal injections of either saline or AICAR (0.7g/kg body weight) for 4 and 8 weeks and were pair-fed throughout the study. AICAR-treated rats had reduced adiposity with increased mitochondrial density in VC and SC fat pads, which was accompanied by reduced circulating leptin and time-dependent and depot-specific regulation of AMPK phosphorylation and FA oxidation. Interestingly, the anorectic effect to exogenous leptin was more pronounced in AICAR-treated animals than controls. This corresponded to reductions in hypothalamic AMPK phosphorylation and suppressor of cytokine signaling 3 content, whereas signal transducer and activator of transcription 3 phosphorylation was either unchanged or increased at 4 and 8 weeks in AICAR-treated rats. Ambulatory activity and whole-body energy expenditure (EE) were also increased with AICAR treatment. Altogether, chronic AICAR-induced AMPK activation increased WAT oxidative machinery, whole-body EE, and hypothalamic leptin sensitivity. This led to significant reductions in VC and SC adiposity without inducing energy-sparing mechanisms that oppose long-term fat loss.


Assuntos
Adenilato Quinase/metabolismo , Adipócitos/metabolismo , Adiposidade/efeitos dos fármacos , Aminoimidazol Carboxamida/análogos & derivados , Ativação Enzimática/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Leptina/metabolismo , Ribonucleotídeos/farmacologia , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Palmitatos/metabolismo , Ratos , Ratos Wistar
10.
Mol Cell Biol ; 29(16): 4563-73, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19528236

RESUMO

PTP1B(-/-) mice are resistant to diet-induced obesity due to leptin hypersensitivity and consequent increased energy expenditure. We aimed to determine the cellular mechanisms underlying this metabolic state. AMPK is an important mediator of leptin's metabolic effects. We find that alpha1 and alpha2 AMPK activity are elevated and acetyl-coenzyme A carboxylase activity is decreased in the muscle and brown adipose tissue (BAT) of PTP1B(-/-) mice. The effects of PTP1B deficiency on alpha2, but not alpha1, AMPK activity in BAT and muscle are neuronally mediated, as they are present in neuron- but not muscle-specific PTP1B(-/-) mice. In addition, AMPK activity is decreased in the hypothalamic nuclei of neuronal and whole-body PTP1B(-/-) mice, accompanied by alterations in neuropeptide expression that are indicative of enhanced leptin sensitivity. Furthermore, AMPK target genes regulating mitochondrial biogenesis, fatty acid oxidation, and energy expenditure are induced with PTP1B inhibition, resulting in increased mitochondrial content in BAT and conversion to a more oxidative muscle fiber type. Thus, neuronal PTP1B inhibition results in decreased hypothalamic AMPK activity, isoform-specific AMPK activation in peripheral tissues, and downstream gene expression changes that promote leanness and increased energy expenditure. Therefore, the mechanism by which PTP1B regulates adiposity and leptin sensitivity likely involves the coordinated regulation of AMPK in hypothalamus and peripheral tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipotálamo/enzimologia , Isoenzimas/metabolismo , Neurônios/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal , Ativação Enzimática , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais/fisiologia , Distribuição Tecidual
11.
Brain Res ; 1215: 105-15, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18485333

RESUMO

Leptin, a hormone produced by adipose tissue, reduces food intake and boosts energy expenditure via activation of the JAK2-STAT3 signalling pathway in adult mammal hypothalamic neurons. It is found in blood early after birth, peaking around postnatal day (P) 10. The hypothalamus of neonatal mice administered intraperitoneal leptin (3 mg/kg of body weight) was investigated for phospho-STAT3-positive cells to gain insights into the timing of maturation of the leptin signal transduction system. Leptin responsiveness was first detected in arcuate nucleus, where it was faint at P1 and evident from P5. It was then identified in medial preoptic area, anterior hypothalamus, retrochiasmatic area, dorsomedial nucleus and premammillary nucleus from P7, and in ventromedial nucleus and lateral hypothalamus from P11. From P13 onwards, hypothalamic P-STAT3 staining was indistinguishable from that of adult mice. Significant hypothalamic STAT3 activation was also detected by Western blotting at P11 and P15. The level of activation seen in adults was comparable to that observed at P15 although, remarkably, leptin-induced feeding reduction is observed only after the fourth postnatal week. Neuronal and glial markers and double-labelling immunohistochemistry showed that leptin-stimulated hypothalamic cells that had already reached their final position in a given area or nucleus were neurons; however, leptin responsiveness preceded positivity for the neuronal markers, suggesting a not fully differentiated status. Interestingly, leptin also increased P-STAT3 and c-Fos immunoreactivity in a distinctive and transient (from P5 to P13) cell population found in the dorsal part of the third ventricle and in subependymal position. These cells did not express mature or immature neuronal or glial markers. Their ultrastructural appearance, though suggestive of differentiating cells, was not conclusive for a specific phenotype.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Regulação do Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Obesos , Distribuição Tecidual
12.
J Nutr Biochem ; 19(5): 295-304, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17651958

RESUMO

Epidemiological studies have demonstrated that people who eat more fruits and vegetables (rich in carotenoids) and people who have higher serum beta-carotene (BC) levels have a lower risk of cancer, particularly lung cancer. However, the two main human intervention studies of BC supplementation (the ATBC and the CARET trials) revealed an increased risk of lung cancer among smokers and asbestos workers. Previous studies carried out in the ferret have reported that BC effects are related to dose. Here, we treated ferrets with two concentrations of oral BC (0.8 and 3.2 mg/kg body weight per day) for 6 months, using BC in a formulation also containing dl-alpha-tocopherol and ascorbyl palmitate. The effect of the smoke-derived carcinogenic agent benzo[a]pyrene (BP), with or without low-dose BC, was also analysed. We determined the protein levels and mRNA expression levels of activator protein 1 (c-Jun and c-Fos), c-Myc, cyclin D1, proliferating cellular nuclear antigen and retinoic acid receptor beta. We did not find higher levels of cell proliferation markers in the lung of ferrets treated with BC or signals of squamous metaplasia lesions either. On the other hand, although no evident signals of pulmonary carcinogenesis were observed in animals exposed to BP, BC supplementation in these animals may prevent against excess cell proliferation, since this reestablishes Jun protein and cyclin D1 mRNA levels in the lung of BP-exposed animals. In summary, these results show that the combination of BC with alpha-tocopherol and ascorbyl palmitate does not induce pro-oxidant effects in the lung of ferrets.


Assuntos
Benzo(a)pireno/toxicidade , Ciclo Celular/efeitos dos fármacos , Suplementos Nutricionais , Furões/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , beta Caroteno/farmacologia , Animais , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Biomarcadores/análise , Feminino , Pulmão/metabolismo , Pulmão/patologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Distribuição Aleatória , Fatores de Tempo , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/farmacologia , beta Caroteno/administração & dosagem
13.
Biochim Biophys Acta ; 1740(2): 305-12, 2005 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-15893457

RESUMO

Adipose tissue is an important retinoid depot and retinoids are known to influence white and brown adipocyte metabolism. Identifying nutrients that can affect the biological activity of the adipose organ would be of great medical interest in the light of the current obesity epidemic and related disorders in developed countries. The vast majority of mammal studies of chronic administration of oral beta-carotene have used murine models, while few have employed mammals exhibiting uptake and processing of intestinal beta-carotene similar to those of humans. While rodents transform practically all ingested beta-carotene into retinol, in ferrets, as in humans, part of the beta-carotene is absorbed and released into the circulation intact. We studied the effects of 6-month daily administration of two doses of oral beta-carotene (0.8 or 3.2 mg/kg/day) on ferret body weight, size of body fat depots, and, using morphological and morphometric methods, on subcutaneous (inguinal) white adipose tissue (WAT). Because of the oral mode of administration, liver, stomach, and small and large intestine were also studied. Control animals received the vehicle. Data show that at the end of treatment the higher dose induced significantly higher body weight compared with controls and significantly higher inguinal fat depot compared with animals treated with the lower dose. In addition, chronic treatment with beta-carotene induced a dose-dependent hypertrophy of white adipocytes and increased neoangiogenesis in subcutaneous WAT in all treated ferrets. Vasculogenesis was independent of adipocyte hypertrophy. We also found focally evident liver steatosis in the ferrets treated with the higher dose of beta-carotene. The other gastrointestinal tract organs studied were not significantly different from those of control animals.


Assuntos
Tecido Adiposo/efeitos dos fármacos , beta Caroteno/farmacologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/patologia , Tecido Adiposo/ultraestrutura , Administração Oral , Animais , Peso Corporal , Capilares/anatomia & histologia , Capilares/efeitos dos fármacos , Capilares/patologia , Relação Dose-Resposta a Droga , Feminino , Furões , Fígado/efeitos dos fármacos , Fígado/patologia , Tamanho do Órgão , Tela Subcutânea , Fatores de Tempo , beta Caroteno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA